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Abstract—A self-contained autonomous dead reckoning (DR) 

system is desired to complement the Global Navigation Satellite 
System (GNSS) for land vehicles, for which the odometer-aided 
inertial navigation system (ODO/INS) is a classical solution. In 
this study, we use a wheel-mounted MEMS IMU (Wheel-IMU) to 
substitute the odometer, and further, investigate three types of 
measurement models, including the velocity measurement, 
displacement increment measurement, and contact point 
zero-velocity measurement, in the Wheel-IMU based DR system. 
The measurement produced by the Wheel-IMU along with the 
non-holonomic constraint (NHC) are fused with INS through an 
error-state extended Kalman filter (EKF). Theoretical discussion 
and field tests illustrate the feasibility and equivalence of the 
three measurements in terms of the overall DR performance. The 
maximum horizontal position drifts are all less than 2% of the 
total travelled distance. Additionally, the displacement increment 
measurement model is less sensitive to the lever arm error 
between the Wheel-IMU and the wheel center. 
 

Index Terms—Wheel-mounted IMU, dead reckoning, 
odometer-aided INS, zero-velocity updates, vehicular navigation. 
 

NOMENCLATURE 

a) Matrices are denoted in uppercase bold letters. 
b) Vectors are denoted in lowercase bold italic letters. 
c) Scalars are denoted in lowercase italic letters. 
d) Coordinate frames involved in the vector transformation are 

denoted as superscript and subscript. For vectors, the 
superscript denotes the projected coordinate system. 

e) ∗̂  denotes the estimated or computed values. 
f)  ∗  denotes the observed or measured values. 
g) xa  denotes the element of vector a  in the x  axis. 
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I. INTRODUCTION 

HE Global Navigation Satellite System (GNSS) has been 
commonly used for vehicular navigation since its very 

birth. Although it can provide accurate positioning service in 
line of sight conditions [1], the stability and reliability 
deteriorate in complicated environments such as urban 
canyons and forests owing to the multipath and signal 
blockage [2, 3]. Therefore, other relative positioning systems 
are required to complement the GNSS to maintain the 
accuracy during GNSS outages. 

When considering a self-contained autonomous navigation 
system which is immune to the disturbance from surroundings, 
it is not reasonable to rely on the exteroceptive sensors, e.g., 
camera and light detection and ranging (LiDAR) [4-8]. These 
visual navigation systems rely on the perception of the external 
environments which suffer from the illumination variation, 
high motion blur, extreme weather conditions, etc. 

The inertial navigation system (INS) is an old but widely 
used technology to determine the attitude and position for land 
vehicles. With the explosive development of 
microelectromechanical system (MEMS) techniques, MEMS 
inertial measurement units (IMUs) have been extensively 
applied for vehicular navigation owing to their low cost, small 
size, light weight, and low power consumption [9]. 
Nonetheless, the positioning error of INS drifts quickly with 
time because of the significant inherent noise and bias 
instability, especially for low-end sensors. In consequence, 
other sensors are needed to limit the error accumulation of 
INS. 

The odometer-aided INS (ODO/INS), using either velocity 
or travelled distance as measurement, has been exhaustively 
studied for decades [10]. Particularly, a land vehicle cannot 
move in the directions perpendicular to the forward direction 
in the vehicle frame in general [11]. This is known as the 
non-holonomic constraints (NHC). It was proven that 
odometer and NHC contribute significantly to restrain the 
error drift and enhance the INS stability [12, 13]. Zhao et al 
[14] proposed an adaptive two-stage Kalman filter to solve the 
problem that the changes of the odometer scale factor error and 
the process noise degrade the system performance. Wu et al 
[10, 15] analyzed the global observability for the 
self-calibration of ODO/INS integrated system and 
implemented the self-calibration procedure with the aid of 

Yibin Wu, Xiaoji Niu and Jian Kuang 

A Comparison of Three Measurement Models 
for the Wheel-mounted MEMS IMU-based 

Dead Reckoning System 

T 

mailto:pubs-permissions@ieee.org
mailto:kuang%7d@whu.edu.cn


> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

2 

GPS. Authors in [16] applied the state transformation extended 
Kalman filter (EKF) in the ODO/INS system to address the 
covariance-inconsistency problem. A comparison of the 
loosely-coupled mode and tightly-coupled mode for ODO/INS 
was presented in [17], where the travelled distance is used as 
observation. Authors in [18] used odometer distance 
measurement to integrate with INS in degraded GPS 
environments. An INS/laser Doppler velocimeter (LDV) 
integrated navigation algorithm was proposed in [19], in which 
the distance increment errors over a given time interval were 
treated as measurements to fully exploit the NHCs and LDV 
information per cycle. Ouyang et al [20] analyzed the error 
characteristics of the odometer pulses and investigated three 
measurement models in the ODO/INS integrated system, 
including pulse accumulation, pulse increment, and pulse 
velocity measurement. Field experiments showed that the 
standard pulse velocity measurement yields the best 
positioning accuracy.  

However, the reliability of the odometer data depends on the 
road conditions and vehicle maneuvers. It is also challenging 
to fuse information from different systems because of 
hardware modification and data transfer synchronization 
problems [21]. 

In addition to installing external odometer or accessing the 
onboard wheel encoder of the vehicle, the wheel velocity can 
be obtained by mounting the IMU to the vehicle wheel. Let 
one axis of the IMU be parallel to the rotation axis, then the 
wheel velocity can thereby be calculated using the gyroscope 
outputs of that axis and the wheel radius. Moreover, rotating 
the IMU around an axis with a constant speed can cancel the 
constant sensor bias errors to some extent, which is known as 
the rotation modulation [9, 22, 23]. 

In our previous study [24], a wheel-mounted MEMS IMU 
(Wheel-IMU)-based dead reckoning (DR) system called 
Wheel-INS is proposed. In Wheel-INS, the IMU is placed on 
the non-steering wheel of the vehicle. Then the vehicle 
forward velocity computed by the gyroscope outputs and 
wheel radius is treated as an external observation with NHC to 
fuse with the strapdown INS. Experimental results have 
illustrated that the positioning and heading accuracy of 
Wheel-INS have been respectively improved by 23% and 15% 
against ODO/INS. Furthermore, Wheel-INS exhibits 
significant resilience to the gyroscope bias comparing with 
ODO/INS. 

Besides the wheel velocity, the Wheel-IMU can produce the 
displacement increment measurement by integrating the 
vehicle velocity and attitude. This observation would be more 
accurate and stable than the traveled distance in the vehicle 
frame produced by the odometer, because the vehicle attitude 
is used to project the vehicle displacement to the navigation 
frame at every IMU data epoch (usually at 200 Hz), shown as 
Fig. 3. Thus, the displacement measurement would be more 
reliable compared to the distance measurement used in 
ODO/INS, especially when the vehicle is turning.  

In particular, the Wheel-IMU can be used to determine the 
contact point between the wheel and ground. Similar to the 
NHC, it is true that the velocity of the contact point on the 

wheel with respect to the ground is zero if the vehicle does not 
slide on the ground or jump off the ground. Hence, the 
zero-velocity measurement can be employed [25]. The 
observation model is deduced in Section III-C. Zero velocity 
update (ZUPT) has been widely used as an external 
observation to suppress the error drift of INS for pedestrian 
dead reckoning [26] and vehicular navigation [12, 27]. 

In conclusion, based on our previous study [24], this paper 
investigates and compares three kinds of measurement models 
in Wheel-INS. 

1) Velocity measurement: the wheel velocity calculated by 
the wheel radius and the gyroscope readings of the 
Wheel-IMU. 

2) Displacement increment measurement: the displacement 
increment of the vehicle in a certain period, calculated by 
integrating the vehicle velocity and attitude within the 
time frame. 

3) Contact point zero-velocity measurement: the velocity of 
the contact point on the wheel with respect to the ground 
equaling to zero in general. 

 
(a) System structure of the velocity measurement-based Wheel-INS [24]. 
 

 
(b) System structure of the displacement increment measurement-based 
Wheel-INS. 

 

 
(c) System structure of the contact point zero-velocity measurement-based 
Wheel-INS. 

Fig. 1 Overview of the structures of the three measurement models-based 
Wheel-INS. ω  and f  are the angular rate and specific force measured by 
the Wheel-IMU, respectively; “PVA” indicates the position, velocity, and 
attitude of the IMU; ψ  indicates the vehicle heading; φ indicates the roll 
angle of the Wheel-IMU. 
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Fig. 1 depicts the algorithm flows of the three different 
measurement models-based Wheel-INS. The system is 
implemented using a 21-dimensional error-state EKF. Details 
of the state model and observation models are presented in 
Section II–B and Section III, respectively. The state 
corrections estimated by the EKF are fed back to update the 
vehicle state as well as compensate the IMU outputs. 

The remaining content is organized as follows. Section II 
gives the preliminaries of Wheel-INS, including the 
installation of the Wheel-IMU, the definition of the 
misalignment errors, and the error state model of the EKF. 
Section III deduces the three types of measurements and 
discusses their characteristic from the perspective of 
observation model. Experimental results are presented and 
analyzed in Section IV. Section V compares the characteristics 
of the three measurement models. Section VI provides some 
conclusions and directions for future work.  

II. PREREQUISITES 
Unlike the conventional ODO/INS whereby the IMU is 

placed on the vehicle body, in Wheel-INS, the IMU is 
mounted on the wheel of the vehicle. In this section, the 
installation scheme of the Wheel-IMU and the coordinate 
systems are defined and analyzed firstly. Then we provide a 
review of the dynamic model of the error state adopted in the 
EKF to lay the foundation of Wheel-INS. 

A. Installation of the Wheel-IMU 
To make the DR system indicate the vehicle state intuitively 

without being affected by the vehicle maneuvers, the 
Wheel-IMU is placed on a non-steering wheel of the vehicle. 
Fig. 2 illustrates the installation of the Wheel-IMU and the 
definition of the involved coordinate systems.  

 

Fig. 2 Definition of the axes directions for the vehicle frame (v-frame), wheel 
frame (w-frame), and IMU body frame (b-frame). The position and attitude 
misalignment errors between the b-frame and the w-frame are also depicted 
[24]. 

The v-frame denotes the vehicle coordinate system, with the 
x-axis pointing to the advancement direction of the host 
vehicle, y-axis pointing right, z-axis pointing down, i.e., 
forward-right-down system. The w-frame denotes the wheel 
coordinate system. Its origin is at the rotation center of the 

wheel. Its x-axis points to the right of the vehicle, and its y- and 
z-axes are parallel to the wheel surface to complete a 
right-handed orthogonal frame. The b-frame denotes the IMU 
coordinate system, in which the accelerations and angular rates 
generated by the strapdown accelerometers and gyroscopes are 
resolved [28]. The b-frame axes are the same as the IMU’s 
body axes. The x-axis of b-frame is aligned with the wheel 
rotation axis, pointing to the right of the vehicle. Therefore, 
given a stable axle structure, the heading difference between 
the Wheel-IMU and the vehicle can be approximated as fixed 
(equaling to 90°), i.e., 

 / 2n n
b vψ ψ π= +  (1) 

where n
bψ  and n

vψ  denote the IMU heading and vehicle 
heading, respectively. n  indicates the n-frame, which is a 
local-level frame with origin coinciding with the b-frame; 
x-axis directs at the geodetic north, y-axis east, and z-axis 
downward vertically, namely, the north-east-down system. 

As shown in Fig. 2, it is inevitable that the b-frame is 
misaligned with the w-frame. Both the position (i.e., lever arm) 
and attitude misalignment errors (i.e., mounting angles) have 
been defined and analyzed in our previous study [24]. It is 
emphasized that these errors must be compensated in advance 
to obtain more robust and accurate state estimates. The lever 
arm can be measured or estimated online by augmenting it into 
the state vector, whereas the mounting angles can be calibrated 
by purpose-designed algorithm. Refer to [29] for details of the 
mounting angle calibration procedure and error analysis. 

The transformation from the b-frame to the n-frame can be 
written as 

 
c c c s s s c s s c s c
c s c c s s s s c c s s

s s c c c

n
b

θ ψ φ ψ φ θ ψ φ ψ φ θ ψ
θ ψ φ ψ φ θ ψ φ ψ φ θ ψ

θ φ θ φ θ

− + + 
 = + − + 
 − 

C (2) 

where n
bC  indicates the direction cosine matrix (DCM) from 

the b-frame to the n-frame; c and s indicate “cos” and “sin”, 
respectively; φ , θ , and ψ  indicate the roll, pitch, and 
heading angle of the IMU, respectively. The transformation 
from the b-frame to the w-frame can be written as 

 
cos cos sin sin cos
cos sin cos sin sin

sin 0 cos

w
b

δθ δψ δψ δθ δψ
δθ δψ δψ δθ δψ

δθ δθ

− 
 =  
 − 

C  (3) 

where w
bC  indicates the DCM from the b-frame to the 

w-frame; δθ  and δψ  indicate the pitch and heading 
mounting angles of the Wheel-IMU with respect to the wheel 
frame, respectively. As the Wheel-IMU rotates with the wheel, 
the rolling angle is not considered. Assume that the vehicle is 
moving on a horizontal plane and the mounting angles of the 
Wheel-IMU have been compensated, then the transformation 
from the n-frame to the v-frame can be written as 

 
cos sin 0

= sin cos 0
0 0 1

n n
v v

v n n
n v v

ψ ψ
ψ ψ

 −
 
 
  

C  (4) 

where v
nC  indicates the DCM from the n-frame to the v-frame; 

n
vψ  indicates the heading angle of the vehicle. As the vehicle is 

assumed to move on the horizontal surface, its pitch and roll 
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angles are zero. With the transformation matrices presented 
above, all the transformation matrices between these four 
coordinates systems can be consequently determined. 

Assuming the misalignment error has been calibrated and 
compensated, with the rotation of the wheel, the constant error 
of the gyroscope measurements in the two axes parallel to the 
wheel plane would be modulated into sine waves. After a 
period of integration, the accumulated heading error caused by 
the constant gyroscope bias error is canceled. [24] gives a 
heuristic explanation of the rotation modulation effect. Details 
can be found in [9, 30]. 

B. Error State Model 
In this study, the conventional strapdown INS is leveraged 

to predict the IMU state. The kinematic equations of INS are 
described at length in the literature [12, 23, 31]; thus, we do 
not go into details here. We adopt the 21-dimensional 
error-state EKF in Wheel-INS.  

A large amount of state estimators for nonlinear systems 
have been proposed and applied to real world applications. 
Firstly, Wheel-INS is a local DR system without the awareness 
of absolute heading and localization. Benefiting from the 
rotation modulation, the heading drift of Wheel-INS is rather 
slow. Additionally, it can be observed from Eq. (6)-(8) that the 
state model in Wheel-INS is linear and quite simple. By 
deriving the error-state dynamics via perturbation of the 
nonlinear plant, the error-state EKF lends itself to optimal 
estimation of the error states [32, 33]. Therefore, those 
sophisticated state estimators like unscented Kalman filter 
(UKF) [34], particle filter (PF) [35], and strong tracking 
Kalman filter (STKF) [36, 37] would only limitedly improve 
the performance but increase computational cost instead. For 
the sake of simplicity and efficiency, we use the error-state 
EKF to implement the information fusion and state estimation 
in Wheel-INS. Moreover, we have proved in our latest paper 
[24] that the 21-state exhibits a better performance in 
Wheel-INS. 

In this study, the state vector is constructed in the n-frame, 
including three-dimensional position errors, three-dimensional 
velocity errors, attitude errors, residual bias and scale factor 
errors of the gyroscope and accelerometer. It can be written as 

( ) ( ) ( )
TT T T T T T Tn n

g a g at δ δ δ δ δ δ 
  

x = r v b b s sφ  (5) 

where nδ r , nδ v , and φ  are the INS indicated position, 
velocity, and attitude errors, respectively; gδ b  and aδ b  are 
the residual bias errors of the gyroscope and the accelerometer, 
respectively; gδ s  and aδ s  are the residual scale factor errors 
of the gyroscope and accelerometer, respectively. Because of 
the errors from the inertial sensors, IMU initial state, and other 
sources, the navigation parameters calculated by the INS 
mechanization equations contain errors. Several models have 
been developed to describe the time-dependent behavior of 
these errors [12]; the Phi-angle model is applied here, which 
can be expressed as 

 n b
b ibδ= −Cφ ω  (6) 

 n n b n b
b bδ δ= + ×C Cv f f φ  (7) 

 n nδ δ=r v  (8) 
where b

ibδω  and bδ f are the error vectors of the gyroscope 
and accelerometer, respectively, which can be expressed as 

( )b b
ib g ib gdiagδ = +ω b ω s  and ( )b b

a adiagδ = +f b f s ; 
( )diag   is the diagonal matrix form of a vector. The sensor 

errors must be modeled to be augmented into the state vector. 
In this study, we chose the first-order Gauss-Markov process 
[38, 39] to model the residual sensor errors. The 
continuous-time model and discrete-time model are written as 

 
1 /

1

1

kt T
k k k

x x w
T

x e x w+−∆
+

= − +

= +


 (9) 

where x is the random variable; T  is the correlation time of 
the process; k is the discrete time index; and w  is the driving 
white noise. The continuous-time dynamic model and 
Jacobian matrix of the EKF can be found in [24]. 

III. MEASUREMENT MODELS 
In this section, the three different measurement models are 

deduced. As discussed in Section II-A, the misalignment 
errors of the Wheel-IMU can cause significant observation 
errors; they must be calibrated previously for better 
performance. Here we assume that both the lever arm and 
mounting angles are compensated carefully in advance. In this 
section, the vehicle velocity measurement calculated by the 
gyro output and the wheel radius is derived firstly. Then, the 
displacement increment measurement using the vehicle 
heading to project the traveled distance in the v-frame to the 
n-frame is developed. Lastly, details of the construction of the 
contact point zero-velocity measurement are presented. 

A. Velocity Measurement 
The wheel velocity indicated by the Wheel-IMU can be 

written as 

 
( )v

wheel x v x x v

v
wheel x v

v r e r e
v r e
ω ω δω

δω

= − = + −

= + −


 (10) 

where v
wheelv  and v

wheelv  indicate the observed and true wheel 
speed, respectively; xω  is the gyroscope output in the x-axis of 
the Wheel-IMU; xω  is the true value of the angular rate in the 
x-axis of the IMU; xδω  is the gyroscope measurement error; 
r  is the wheel radius, and ve  is the observation noise, 
modeled as the white Gaussian noise.  

The motion of the wheeled robots is generally governed by 
two non-holonomic constraints [10, 40], which refer to the fact 
that the velocity of the robot in the plane perpendicular to the 
forward direction in the v-frame is almost zero [11, 12]. By 
integrating with the NHC, the three-dimensional velocity 
observation in the v-frame can be expressed as 

 
T

= 0 0v v
wheel wheel vv  − v e   (11) 

Because the Wheel-IMU rotates with the wheel, the roll 
angle with respect to the wheel changes periodically. That is to 
say, it cannot be determined whether the vehicle is moving 
uphill or downhill by the Wheel-IMU alone. Therefore, we 
must assume that the vehicle is moving on the horizontal plane. 
Nonetheless, experimental results in [24] have shown that it 
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would not cause significant error if the road slope is not too 
large. According to Eq. (1), the Euler angles of the vehicle can 
be represented as  

 
0
0

/ 2

n
v

n n
v v

n n
v b

φ
θ
ψ ψ π

   
   = =   
   −  

ϕ  (12) 

where φ , θ , and ψ are the roll, pitch, and heading angle of 
the vehicle, respectively.  

By performing the perturbation analysis, the INS-indicated 
velocity in the v-frame can be written as 

( )
( )( )
( )( ) ( )

( )( )
( ) ( )( )

( )

ˆ ˆ ˆˆ ˆ ˆv v n v n b b
wheel n IMU n b nb wheel

v n n
n IMU

v n b b b
n b nb ib wheel

v v n v n b b
wheel n n b nb wheel

v n n b b
n IMU b nb wheel

v n b b
n b wheel ib

δ δ

δ δ

δ

δ

δ

= + ×

≈ + × +

+ + × − × × + ×

 ≈ + + × × 
 − × + × × 

×

C C C

C I

C I I C

C C C

C C

C C

v v l

v v

l

v v l

v l

l

ω

ψ

ψ φ ω ω

ω φ

ω ψ

− ω

 (13) 

where ˆv
wheelv  is the wheel velocity estimated by INS; b

nbω  is the 
angular rate vector of the b-frame with respect to the n-frame 
projected to the b-frame; ˆn

IMUv  is the INS-indicated IMU 
velocity; nδ v  is the velocity error in the state vector; b

wheell  
indicates the lever arm vector between the Wheel-IMU and the 
w-frame projected in the b-frame; v

nC  can be obtained by Eq. 
(4) and Eq. (12); δψ  is the attitude error of the vehicle, which 
is only related to the heading error in the state vector. Thus, it 
can be written as T[0 0 ]n

bδ δψ=ψ . Finally, the velocity 
error measurement equation in the v-frame can be written as 

 
( )( )

( ) ( )( )
( )

ˆv v
v wheel wheel

v n v n b b
n n b nb wheel

v n n b b
n IMU b nb wheel

v n b b
n b wheel ib

δ

δ

δ

δ

= −

 = + × × 
 − × + × × 

×

C C C

C C

C C

z v v

v l

v l

l

ω φ

ω ψ

− ω



 (14) 

B. Displacement Increment Measurement 

 
Fig. 3 Illustration of the displacement increment measurement (Top view).  

The output of a standard odometer can be either the 
instantaneous vehicle velocity or the forward distance since 
last sampling time [20]. In this study, the gyroscope readings 
of the Wheel-IMU in the x-axis are leveraged to obtain wheel 

velocity at every IMU sampling epoch. As opposed to the 
forward traveled distance in the v-frame indicated by the 
odometer [41], we exploit the displacement increment in the 
n-frame as observation, as shown in Fig. 3. The vehicle 
displacement increment in the n-frame is obtained by 
projecting the wheel velocity to the n-frame using the vehicle 
heading in the integral process. Because the odometer cannot 
perceive the change of the vehicle heading, the displacement 
increment model would be more accurate and reliable than the 
forward distance, especially when the vehicle is turning. In 
addition, the integral can mitigate the high-frequency noise of 
inertial sensor output to some extent.  

According to Eq. (10) and Eq. (11), the velocity 
measurement in the n-frame can be written as 

 
( )

ˆn n v
wheel v wheel v

n v n v
v wheel v wheel vδ

= −

= + × −

C

C C

v v e

v v eψ

 
 (15) 

The vehicle also must be assumed to move on the horizontal 
surface here. Similar to Eq. (13), the INS-indicated velocity in 
the n-frame can be represented as 

 

( )
( )( )

( )

ˆ ˆˆ ˆ ˆ

ˆ

n n n b b
wheel IMU b nb wheel

n n n b b
wheel b nb wheel

n b b
b wheel ib

δ

δ

= + ×

= + + × ×

− ×

C

C

C

v v l

v v l

l

ω

ω φ

ω

 (16) 

Then the displacement measurement model is constructed 
by respectively subtracting and integrating the two sides of Eq. 
(16) from Eq. (15). Assuming that the state errors keep 
constant within the integral time interval, we have 

 ( )( )
( ) ( )

Δ Δ

Δ Δ

Δ Δ

ˆ

ˆ

n n
v wheel wheel

t t

n n b b
b nb wheel

t t

n b b n v
b wheel ib v wheel S

t t

dt dt

dt dt

dt dt

δ

δ

δ δ

= −

= + × ×

− × − ×

∫ ∫
∫ ∫
∫ ∫

C

C C

S v v

v l

l v + e

ω φ

ω ψ



 (17) 

where Δt  is the integral time which can be set manually by 
taking the accuracy and computation efficiency into 
consideration. In our experiments, it was set as 0.5 s thus the 
measurement update frequency was 2 Hz. Se  is the 
measurement noise which is assumed as white Gaussian noise 
and 

 

( )

1

Δ

1

Δ
2

Δ Δ
2

ΔΔ
2

n n
k kn

t

n n
k kn

k

n n
k

dt t

t t

tt

δ δδ

δ δδ

δ δ

−

−

+
=

−
= −

= −

∫

∫

v vv

v vv

v v

 (18) 

C. Contact Point Zero-velocity Measurement  
Fig. 4 shows the principle of constructing the contact point 

zero-velocity measurement. Unlike the velocity measurement 
model where the velocity of the Wheel-IMU is projected to the 
wheel center in the v-frame, in the contact point zero-velocity 
measurement model, the IMU velocity is projected to the 
contact point p  on the wheel in the n-frame. The 
measurement is built based on the fact that under general 
vehicle motion conditions (no slip and jumping), the velocity 
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of the contact point on the wheel with respect to the ground is 
zero, namely, T[0 0 0]n

p =v .  
In Fig. 4, let the wheel rotate to the right with velocity ov  

and the angular rate of the wheel be ω . Then, the velocity of 
the contact point p with respect to the wheel center o is 

o
pv rω= , pointing to left. Assuming that there is no slipping 

and jumping of the wheel, the magnitude of the velocity of the 
wheel center ov  is equal to that of o

pv  ( rω ), whereas the 
directions of them are opposite. Consequently, the velocity of 
the contact point p with respect to the n-frame is zero. This 
scheme is similar to the foot-mounted IMU-based pedestrian 
navigation system [26, 42]. When a person is walking, his or 
her feet alternate between a stationary stance phase and a 
moving stride phase. Therefore, the foot-IMU can be used to 
detect the stance phase thereby the ZUPT can be performed to 
limit the error accumulation. While in our case, it is 
unnecessary to determine the stationary time region because 
there is always a point on the wheel contacting with the 
ground. 

 

Fig. 4 Construction of the contact point zero-velocity measurement (Side 
view). φ  is the roll angle of the IMU; b

oyl and b
ozl are the lever arm of the 

Wheel-IMU in the y- and z-axis, respectively; r is the wheel radius; o is the 
wheel center; p is the contact point between the wheel and the ground. 

The velocity of p  in the n-frame indicated by INS is 
 ( )ˆ ˆˆ ˆ ˆn n n b b

p IMU b ib p= + ×Cv v lω  (19) 

where ˆb
pl  is the vector from the Wheel-IMU center b  to the 

contact point p  projected in the b-frame. Obviously, ˆb
pl  

changes periodically with the rotation of the wheel; thus, it 
should be calculated in real time, shown as follows 

 

( )
( )

0 0
ˆ ˆsin sin

ˆ coscos

0
cos
sin

b b
o x o x

b b b
p o y o y

b b
o z o z

b
p

r r

r

φ φ δφ
φ δφφ

φ δφ
φ

      
      = + = + +      
      +     

 
 ≈ +  
 − 

l l
l l l

l l

l

 (20) 

where δφ  is the roll angle error of the Wheel-IMU. As the 
same as the other two measurement models, the vehicle should 
also be assumed to move on the horizontal plane, because the 
contact point determined by the Wheel-IMU is slightly 
different from the real contact point when the vehicle is 

moving uphill or downhill. Combining Eq. (19) and (20), the 
contact point zero-velocity measurement can be derived. 

( ) ( )

( )

, ˆ

0
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sin

= ( )

0
cos ( )
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n n
v p p p

n n n
IMU p

n b b b
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n n b b
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n b n b b
b ib b p ib vp

r

r
r

δ

δ

φ δφ δ
φ

δ

φ δφ δ
φ

= −

= + −
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I C
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C C

z v v

v v v

l e

v l

l e

φ ω ω

ω φ

ω ω



(21) 

where vpe  is the measurement noise, modeled as white 
Gaussian noise. 

Comparing with the other two measurements, the contact 
point zero-velocity measurement is more versatile and 
extensible, because all the ground vehicles, including wheeled 
robots, quadruped robots, and even pedestrians, have a point 
periodically contacting to the ground during their locomotion. 
Hence the contact point zero-velocity measurement can be 
straightforwardly utilized to correct the error drift of INS by 
mounting the IMU at an appropriate place of the vehicle to 
project its velocity to the contact point. 

IV. EXPERIMENTAL RESULTS 
This section provides and analyzes the experimental results 

to compare the performance of the proposed three different 
measurement models-based Wheel-INS. We evaluate the 
navigation performance of the three algorithms in both terms 
of positioning and heading accuracy through multiple sets of 
experiments with different vehicles in different test 
environments. Firstly, the experimental conditions and 
environments are described. Then, the performance 
comparison between the three measurement models is 
presented and analyzed. 

A. Experimental Description 
Field tests were conducted in three different places in 

Wuhan, China with two different ground vehicles. One was the 
Pioneer 3DX robot, a typical differential drive wheeled robot, 
and the other was a car. The Pioneer robot was used for two 
tests and the car for one. Fig. 5 shows the experimental 
platforms. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

7 

 
(a) Pioneer 3DX robot. 

 
(b) Car. 

Fig. 5 Test platforms used in the real-world experiments. 

TABLE I 
TECHNICAL PARAMETERS OF THE IMUS USED IN THE EXPERIMENTS 

IMU ICM20602 POS320 LD A15 

Gyro Bias ( deg h ) 200 0.5 0.02 

Angle Random Walk 
( deg h ) 

0.24 0.05 0.003 

Accelerometer Bias 
( 2m s ) 

0.01 0.00025 0.00015 

Velocity Random Walk 
( m s h ) 

3 0.1 0.03 

The MEMS IMU used in the experiments was a 
self-developed IMU module, containing four ICM20602 
(TDK InvenSense) inertial sensor chips, a chargeable battery 
module, a microprocessor, a SD card for data collection, and a 
Bluetooth module for communication and data transmission. 
The IMU module can be connected with an android phone to 
record the raw data. We collected the outputs of two chips 
(logging at 200 Hz) in one trajectory as two sets of 
experimental data for post-processing. The MEMS IMU was 

carefully placed on the wheel to make them as close as 
possible to the wheel center. As shown in Fig. 5, the two 
vehicles were also equipped with two high-accuracy position 
and orientation systems to provide reference pose: POS320 
(MAP Space Time Navigation Technology Co., Ltd., China) 
with a tactical-grade IMU for the robot experiments and LD 
A15 (Leador Spatial Information Technology Co., Ltd., China) 
with a navigation-grade IMU for the car experiments. Their 
main technique parameters are listed in TABLE I. The 
reference data were processed through a smoothed 
post-processed kinematic (PPK)/INS integration method. 
Technical references for generating the pose ground truth can 
be found in [43, 44]. The time synchronization between the 
MEMS IMU and the reference system was achieved via 
Bluetooth communication. 

 
(a) Track I in the Information Department of Wuhan University. 

 
(b) Track II in the experimental farms in the Huazhong Agriculture University. 

 
(c) Track III in the Wuhan University campus. 

Fig. 6 Experimental trajectories.  

TABLE II 
VEHICLE MOTION INFORMATION IN THE EXPERIMENTS 

Test Track Vehicle Average 
Speed (m/s) 

Total 
Distance (m) 

1 I Pioneer 1.39 ≈1227 
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2 3DX 
3 

II 1.25 ≈1146 
4 
5 

III Car 4.70 ≈12199 
6 

Fig. 6 shows the three test trajectories. Track I is a loopback 
trajectory in a small-scale environment in the Information 
Department of Wuhan University, where the robot moved five 
times. Track II is a polyline trajectory with no return in the 
Huazhong Agriculture University. Track III is a large loop 
trajectory in the campus of Wuhan University, where the robot 
moved approximately two times. The vehicle motion 
information of all the six tests is presented in TABLE II. 

In our experiments, we used the approach proposed in [29] 
to calibrate and compensate the mounting angles before data 
processing. The lever arm was measured manually for three 
times to get the mean value. The initial heading, velocity, and 
position of Wheel-INS were given by the reference system 
directly. We chose this simple method for the initial alignment 
of INS because we mainly focused on the DR performance of 
Wheel-INS. However, other alignment methods should be 
investigated for practical applications. The static IMU data 
before the vehicle started moving were used to estimate the 
initial roll and pitch, as well as the initial gyroscope bias of the 
Wheel-IMU. The initial values of other inertial sensor errors 
were set as zero. The update frequency was set as 2 Hz in all 
the three measurement models-based Wheel-INS. 

In our previous research on Wheel-INS [24], we have 
illustrated the advantages of Wheel-INS in terms of DR 
performance and resilience to large gyroscope bias through 
extensive field experiments. Therefore, in this paper, the 
experimental analysis mainly focuses on the comparison of the 
three measurement models in Wheel-INS. 

B. Performance Comparison of the Three Measurements 
The positioning error in the horizontal plane and the heading 

error of the three measurement models in Test 1 and Test 5 are 
presented in Fig. 7. 

It’s obvious in Fig. 7 that there is no significant difference 
between the navigation errors of the three measurement 
models-based Wheel-INS overall. They show similar 
positioning and heading error drift in views of both the whole 
and local trajectory. However, it can be observed in Fig. 7(a) 
that the displacement increment measurement-based 
Wheel-INS shows different drift trend in about 140s in Test 1. 
This can be considered as a stochastic phenomenon owing to 
the random error since we have processed the data from other 
IMU chips inside the same IMU module in Test 1 and this is 
not always the case. 

It is common to calculate the maximum position drift of the 
entire trajectory or the misclosure error to evaluate the 
positioning performance of a DR system in the community. 
However, this metric is not strict because the loop of the 
trajectory will suppress the error accumulation to some extent, 
especially for INS in which the positioning error always drifts 
in one direction. For example, it can be observed from Fig. 7(a) 
that when the robot turns around (at about 140s, 520s and 800s 
in the first subfigure), the positioning error starts to drift along 
the opposite direction. Therefore, we use the mean drift rate as 
the evaluation criterion here [24]. Firstly, we accumulated the 
traveled distance of the vehicle by a certain increment ( l ) and 
calculated the horizontal position error drift rate (equaling to 
the maximal horizontal positioning error within current 
traveled distance divided by the traveled distance) within each 
distance (l, 2l, 3l, …). Then, the mean value (MEAN) and 
standard deviation (STD, 1 σ ) were computed as the final 
indicator of positioning performance. This approach is similar 
to the odometry evaluation metric proposed in the KITTI 

dataset [45], but we only segmented the trajectory from the 

(a) The position and heading errors of the three measurement models in Test 1.            (b) The position and heading errors of the three measurement models in Test 5. 
 
Fig. 7 The positioning errors in the north and east direction, and the heading error of the three measurement models-based Wheel-INS in Test 1 and Test 5. 
“Velocity”, “Displacement”, and “Contact Point” indicate the velocity measurement, the displacement increment measurement, and the contact point zero-velocity 
measurement, respectively. 
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starting point. Regarding the heading error, the maximum 
(MAX) and root mean square error (RMSE) were calculated. 
In this work, we chose l  as 100 m. Fig. 8 and Fig. 9 show the 
position drift rate in the horizontal plane of the three systems 
(which is a function of the traveled distance) in Test 1 and Test 
5, respectively. 

It can be observed that the drift rates of the three algorithms 
are very close. In addition, the position drift rates of the three 
measurements all present a downward trend with the increase 
of the distance. This is due to that the loop closure in Track I 
and Track III suppressed the position drift.  

TABLE III lists the error statistics of the three systems in all 
the six experiments. Fig. 10 draws the error statistics of the 
three measurements–based Wheel-INS in all the six testes. 

 

Fig. 8 The horizontal positioning drift rate of the three systems in Test 1. 

 

Fig. 9 The horizontal positioning drift rate of the three systems in Test 5. 

TABLE III 
DR PERFORMANCE COMPARISON OF THE THREE MEASUREMENTS 

Test No. Measurement 
Position Drift Rate (%) Heading Error (°) 

MEAN STD MAX RMSE 

1 

Velocity 0.59 0.30 4.79 1.93 

Displacement 0.66 0.32 4.50 1.91 

Contact Point 0.58 0.32 5.06 1.93 

2 

Velocity 1.43 0.54 7.93 3.88 

Displacement 1.66 0.98 7.63 3.26 

Contact Point 1.34 0.58 7.03 2.70 

3 

Velocity 1.17 0.27 4.56 2.16 

Displacement 0.96 0.24 4.47 2.15 

Contact Point 1.32 0.33 4.50 2.16 

4 

Velocity 1.78 0.26 10.88 4.44 

Displacement 1.87 0.35 9.34 4.18 

Contact Point 1.76 0.43 10.83 4.94 

5 
Velocity 0.62 0.42 1.91 0.96 

Displacement 0.61 0.44 2.70 1.28 

Contact Point 0.60 0.42 2.48 1.03 

6 

Velocity 0.83 0.43 4.97 1.60 

Displacement 0.61 0.50 2.55 1.22 

Contact Point 0.66 0.47 3.53 1.00 

From TABLE III, we can learn that in all the six 
experiments, the horizontal position drift rates of all the three 
measurements-based Wheel-INS are all less than 2%. And the 
RMSE of the heading error are all less than 5°. 

It is evident in Fig. 10 that the three measurements show an 
equivalent navigation performance. It is hard to determine 
which measurement model under what conditions can achieve 
a better performance than the other two. For instance, the 
displacement increment measurement slightly outperforms the 
other two measurements in Test 3, while the contact point 
zero-velocity measurement generates the best position 
estimation in Test 1 and Test 2. As for the heading accuracy, 
the three systems also show a same level of accuracy in each 
experiment.  

 

Fig. 10 MEAN position drift rate and MAX heading error of the three methods 
in all the six tests. 

Basically, the three kinds of measurement leverage the same 
information (wheel velocity) to construct the observation 
models. In addition, all the three measurements rely on the 
NHC and the horizontal motion assumption of the vehicle. The 
velocity measurement utilizes the velocity of the wheel center 
along with the NHC to fuse with INS directly. The 
displacement increment measurement integrates the wheel 
velocity in a short time interval to obtain the incremental 
displacement in the n-frame to suppress the error drift of INS. 
And the contact point zero-velocity measurement projects the 
velocity to the contact point between the wheel and the ground 
to construct the constraint.  

However, different measurement model would cause 
different error. For example, the displacement increment 
model is affected by the heading error because vehicle heading 
is required to project the forward distance of the vehicle to the 
n-frame at every IMU sampling epoch, while the rolling angle 
error of the Wheel-IMU would be introduced in the velocity 
projection process in the contact point zero-velocity 
measurement. It is evident that the sensor errors (e.g., random 
noise) of low-cost MEMS IMUs are much more significant 
than the modeling error. Moreover, the rotation of the wheel 
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would eliminate a large part of the heading gyroscope bias 
error, which is one of the main error sources of INS. As a result, 
this observation information would contribute limitedly to 
improve the heading accuracy. In conclusion, the DR 
performance of the three measurements-based Wheel-INS 
using a MEMS IMU should not be dramatically different. 

V. DISCUSSION 
From the derivations of the three measurement models in 

Section III, it can be learned that all the three types of 
observations leverage the same vehicle motion information to 
construct the measurement model in Wheel-INS: the vehicle 
forward velocity and NHC. Although each algorithm exhibits 
its own pros and cons, the overall navigation performance is at 
the same level. However, it is worth mentioning that the 
residual lever arm error has less impact on the displacement 
increment measurement because it integrates the velocity 
within a certain time interval as observation rather than the 
instantaneous velocity. 

To investigate the influence of the residual lever arm error 
on the three measurement models, we manually added a bias in 
the measured lever arm and then compared the positioning 
errors of the three systems in Test 1. Because the misalignment 
error in the wheel plane (namely, the lever arm in the y- and 
z-axis of the b-frame) are more important, we only added 
errors in these two directions, which were both set as 0.2 cm. 
Fig. 11 shows the corresponding positioning and heading 
errors of the three systems in Test 1. 

 
Fig. 11 The positioning error in the north and east direction, and the heading 
error of the three systems in Test 1 (with additional lever arm error). 

Comparing with Fig. 7(a), it can be observed that the 
positioning errors of the velocity measurement and the contact 
point zero-velocity measurement-based Wheel-INS have 
increased. Additionally, there is an obvious vibration in the 
positioning errors of these two systems. In the velocity 
measurement model and the contact point zero-velocity 
measurement model, the lever arm is essential to project the 
velocity of the Wheel-IMU to the reference point (wheel 
center and contact point, respectively). Note that the 
positioning error of Wheel-INS caused by the residual lever 
arm error is mainly embodied in the forward direction of the 

vehicle because with the rotation of the wheel, the velocity 
projection error changes its direction around the rotation axis 
periodically. As a result, the positioning errors in the vehicle 
forward direction vibrate significantly in these two systems 
(the velocity measurement and contact point zero-velocity 
measurement-based Wheel-INS). However, with the 
integration of the velocity in the displacement increment 
measurement, the periodical velocity projection error caused 
by the residual lever arm error would be cancelled to some 
extent; thus, it would not lead to evident deterioration in the 
final positioning results. In conclusion, the displacement 
increment measurement exhibits a desirable immunity to the 
lever arm error. 

VI. CONCLUSION 
In this article, a wheel-mounted MEMS IMU-based DR 

system is studied. Particularly, three types of measurement 
models are exploited based on the Wheel-IMU, including the 
velocity measurement, displacement increment measurement, 
and contact point zero-velocity measurement. Basically, the 
observation information utilized in all the three measurements 
is the same: wheel velocity. Although different errors are 
introduced when different measurement models are 
constructed, they are trivial compared to the sensor errors of 
the MEMS IMU. Furthermore, a large part of the heading 
gyroscope bias error, which is one of the main error sources of 
INS, can be canceled with the rotation of the wheel. Therefore, 
the final navigation results of Wheel-INS using the three 
measurement models should be at the same level. 

Field tests with different vehicle platforms in different 
environments illustrate the feasibility and equivalence of the 
proposed three measurement models. The maximum 
horizontal position drifts are all less than 2% of the total 
travelled distance. Nonetheless, there are some specific 
characteristics of these measurements. Firstly, the 
displacement increment measurement shows considerable 
insensitivity to the lever arm error comparing with the other 
two measurements. Secondly, the velocity measurement is 
more straightforward and concise to be implemented. Finally, 
the contact point zero-velocity measurement exhibits better 
versatility for different kinds of ground vehicles. We have 
made the example data and code available to the community 
(https://github.com/i2Nav-WHU/Wheel-INS).  

Although Wheel-INS can provide considerable DR results, 
the positioning errors will inevitably accumulate because of 
the lack of external correction information. For the future 
research, integrating other exteroceptive sensors (e.g., camera 
and LiDAR) to enable the loop closure would be a promising 
approach to eliminate the long-term error accumulation. 
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