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A B S T R A C T

The mobile mapping system (MMS) is an enabling technology for indoor location-based services. The position
and orientation system (POS) is one of the cores of the mobile mapping system. This paper proposes a
pedestrian POS solution for infrastructure-free environments based on the fusion of foot-mounted IMU and
stereo camera. The structure from motion (SFM) constructs the trajectory and environment under the condition
with rich visual textures; the stereo camera detects loop-closure for mitigating the accumulated error; the foot-
mounted pedestrian dead reckoning (Foot-PDR) provides reliable continuous trajectories using the IMU when
the visual-based system degrades or crashes. The feasibility and reliability of the proposed system were verified
by an office building test and an underground parking lot test. The proposed system achieved 0.237 m and
0.227 m position errors in these two scenarios, respectively. Moreover, the system can maintain the average
position accuracy of 0.3 m when the camera shortly failed in some areas.
. Introduction

With the development of the Internet of Things(IoT) and Location-
ased services(LBS), a mobile mapping system(MMS) [1] that can
rovide geospatially and attribute information in an efficient and au-
omated manner is widely applied in various geographic information
pplications. And the position and orientation system (POS) that de-
ermines the time-variant position and orientation of the mapping
latform plays a key role for the MMS. For outdoor scenarios, where
he traditional MMS aims to work, the multi-sensory navigation system
onsists of a global navigation satellite system (GNSS) [2], and inertial
avigation system (INS) can provide continuous, reliable, and accurate
osition and orientation in real-time. Nevertheless, it is challenging to
rovide reliable and accurate position and orientation in an indoor
nvironment because the GNSS signals are interfered with or even
locked. Thus, the indoor POS solution is vital and urgently needed
or indoor MMS.

A reliable and accurate indoor positioning technology remains an
pen problem when considering the cost and practicality. WLAN [3–5]
nd Bluetooth [6–8] are widely adopted technique for indoor position-
ng. The accuracy of those technologies is only 1–3 m in general, which
s insufficient for the requirement of indoor MMS. The RFID [9] is
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also widely adopted to provide higher accuracy positioning, but this
technique needs many pre-installed tags. Ultrawideband (UWB) [10,11]
can determine position with centimeter level in theory. Unfortunately,
UWB cannot work well in complex environments since the signal is
easily affected by the non-line-of-sight (NLOS) [12] and multipath
errors caused by obstacles. Moreover, wireless position techniques
depend on the installment of signal nodes, which requires many human
resources, material, and time resources for deployment. Meanwhile,
wireless signal-based positioning methods cannot provide accurate ori-
entation. Therefore, from the perspective of the construction cost and
system performance, it is unrealistic to provide an indoor POS by using
wireless positioning techniques.

Infrastructure-free position techniques are better choices of indoor
MMS in practice, which is independent of any pre-installed base sta-
tions. Such solutions can easily work in large-scale indoor buildings.
The magnetic fingerprinting-based system can provide meter level po-
sitioning accuracy using an ambient magnetic field. However, the
accuracy is not sufficient and it is suffering from frequent performance
degradation caused by the similarity of indoor magnetic distribution
and the soft iron effect caused by varying electromagnetic environ-
ments [13,14]. The simultaneous localization and mapping (SLAM)
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techniques including camera-based [15–17] or laser-based SLAM [18–
20] techniques, can provide position of the mapping platform and a
consistent map of environments at the same time. Laser-based SLAM
can generate a point cloud map of the environment with high precision
by fusing large continuous sets of point clouds from a laser scanner.
However, a laser scanner, which is heavy and expensive, is not suitable
for some occasions. The camera-based SLAM is an alternative to the
laser-based one, which estimates self pose and environments by finding
correspondence points between images. However, camera-based SLAM
is significantly affected by bad illumination conditions, moving objects,
and feature point distributions.

The inertial navigation system (INS), a completely self-contained
navigation system without a required external signal, determines rel-
ative position and orientation based on measured angular rate and
acceleration(i.e., specific force). However, INS has a significant draw-
back in that the accuracy degrades over time rapidly due to the
error of inertial sensors(i.e., gyroscope and accelerometer). Thus, INS
can only provide accurate relative position and orientation in the
short-term period. The foot-mounted pedestrian dead reckoning(Foot-
PDR) [21–23] utilizes the zero-velocity constraint coming from the
walk characteristics of the pedestrian to mitigate the drift error of
the velocity produced by INS, so as to achieve long-term positioning
without external dependency. Nevertheless, the position error is still
accumulated slowly. Then, the foot-mounted PDR [24] aided by the
control points(i.e.point with known coordinates) is used as an alter-
native to provide high accuracy position during testing. However, the
task of coordinate the surveying of the control points still requires
significant human power.

The visual–inertial mapping system, such as the Maplab [25], ORB-
SLAM3 [26] and VINS-Fusion [23], fuses the camera and IMU to build
a map and reconstruct trajectories. Since it utilized visual and inertial
measurements simultaneously, its robustness is significantly improved
compared to visual-only systems. However, the visual–inertial mapping
system still suffers failure frequently in scenes with insufficient illu-
mination or textureless. Therefore, the mapping workflow should be
carefully designed by experts of visual SLAM. This is hard to achieve
in real-world applications.

In this study, a Pedestrian Positioning and Orientation System (P-
POS) based on a foot-mounted stereo camera and a foot-mounted IMU
is proposed for indoor MMS. The proposed system achieves better
robustness than the visual–inertial mapping system and the foot-PDR.
Compared with the general visual–inertial system, the proposed system
is a foot-PDR-centered system. The trajectory of the inherently low-
drift foot-PDR is further corrected through the loop-closure detected
by the visual system. This high-quality corrected trajectory functions
as the initial value of visual–inertial bundle adjustment. Such design
relies on the closed-looped foot-PDR and makes the visual result a
best-to-have. So, the proposed system can work robustly in harsh
environments which contain some sub-areas where the visual-based
method is invalid. The proposed design can take full advantage of
the foot-mounted condition from the following two aspects: Firstly,
the foot-mounted camera suffers serious image blurring problems in
general but has guaranteed high-quality image at the moment when the
foot attach to the floor. Secondly, the foot-mounted PDR can maintain
position and orientation accuracy for a much longer-term compared to
a traditional hand-held PDR. Compared to the foot-PDR, the proposed
system can automatically detect loop-closure through the camera vision
to eliminate accumulated error. The two foot-mounted sensors, i.e., the
stereo camera and the IMU, can backup each other in an essential way
based on their complementary characteristics.

The paper is organized as follows: the overview of the proposed
system is presented in Section 2; the detailed algorithm description of
the proposed system are provided in Section 3; the two experiment
designed to illustrate the practicality and accuracy of the system is
presented in Section 4; finally, Section 5 provides a summarize of this
2

paper. t
2. System overview

Fig. 1 shows the block diagram of the proposed visual–inertial
mobile mapping system. The system includes Foot-PDR, Visual process,
and Back-end.

In the Foot PDR block, the inertial measurements provide roughly
poses by adopting a typical ZUPT-aided error-state Kalman filter
(ESKF). The zero-velocity update function as a pseudo observation in
the foot PDR is applied to correct the IMU mechanism’s accumulation
drift. Thus, the Foot-mounted IMU can provide long term position when
the visual-based system crashed.

In the Visual process block, the keyframe selector chooses the
keyframe based on inertial measurements. This operation can be uti-
lized during the data collection stage to reduce the dataset size by
ignoring redundant information. Specifically, the keyframe selector se-
lect image captured at the middle-time of the stance phase. Obviously,
the image captured at other moments has obvious motion blur as shown
in Fig. 2. Finally, the selected keyframes are sent to the loop-closure
detection and feature tracker module. These two modules find corre-
sponding feature points between adjacent keyframes and loop-closed
keyframes, respectively.

The back-end block consists of two stages: the pose graph optimiza-
tion (PGO) and the visual–inertial bundle adjustment (VIBA). The PGO
module uses relative poses from the foot-mounted PDR and loop-closure
detection to estimate trajectory. In other words, the PGO module
estimates trajectory by minimizing the relative pose residual. Thus,
in this stage, errors of the foot-mounted PDR are partially eliminated
by adopting loop-closure information. The VIBA module reconstructs
trajectory and environment by minimizing pre-integration residual and
visual residual. This module is a necessity even it is computationally
expensive, because it can improve the accuracy of trajectories and
consistency of generated point clouds. Meanwhile, since the results
of PGO can provide a good initial position for VIBA module, the
calculation time of VIBA will reduce since the iteration times reduce
the benefit from the good initial position.

3. Algorithm description

In this section, the algorithm adopted in this paper is described.
Section 3.1 brief introduced coordinates used in the proposed algo-
rithm. The foot PDR and the gait cycle of pedestrians are described
in Section 3.2. The visual process block is described in Section 3.3.
Sections 3.4 and 3.5 described cost function of pose graph optimization
and visual–inertial bundle adjustment as shown in Fig. 1 respectively.

3.1. Coordinate definition

There are five coordinate frames, as illustrated in Fig. 3 that have
been defined in this paper. The world frame is denoted by (⋅)𝑤, which
is an earth-fixed frame. In this paper, all control points are represented
in the world frame. The navigation frame is a gravity-aligned frame
denoted by (⋅)𝑛. It is aligned with the IMU center at the initial moment.
The left and right camera frame, as well as the IMU frame while taking
the 𝑖th image, are denoted by (⋅)𝑐

𝐿
𝑖 , (⋅)𝑐𝑅𝑖 and (⋅)𝑏𝑖 respectively.

As shown in Fig. 3, the 3D location of map point 𝑘 in navigation
rame and the 𝑖th left camera frame are denoted by 𝒑𝑛𝑘 and 𝒑𝑏𝑖𝑘 , and the
elation of which are defined by
𝑏𝑖
𝑘 = 𝑹𝑇

𝑛𝑏𝑖
(𝒑𝑛𝑘 − 𝒕𝑛𝑏𝑖 ) (1)

here the 𝑹𝑛𝑏𝑖 ∈ 𝑆𝑂(3) and 𝒕𝑛𝑏𝑖 ∈ R3 represents the rotation from the
-the IMU frame to navigation frame and the coordinate of the origin
oint of the 𝑖th IMU frame in the navigation frame respectively.

The observation of feature points has been represented on a gen-
ralized image plane directly to simplify the description. For instance,

he coordinates of feature point 𝑘 observed by the left camera noted
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Fig. 1. The block diagram of the proposed visual–inertial mobile mapping system.
as 𝒑̂
𝑐𝐿𝑖
𝑘 = [𝑥̂

𝑐𝐿𝑖
𝑘 , 𝑦̂

𝑐𝐿𝑖
𝑘 , 1]𝑇 . It could be calculated from 𝒑

𝑐𝐿𝑖
𝑘 = [𝑥

𝑐𝐿𝑖
𝑘 , 𝑦

𝑐𝐿𝑖
𝑘 , 𝑧

𝑐𝐿𝑖
𝑘 ]

through following equation:

𝒑̂
𝑐𝐿𝑖
𝑘 = Π(𝒑

𝑐𝐿𝑖
𝑘 ) (2)

where Π(⋅) represent the projection from three-dimensional to image
plane as illustrated in Fig. 3.

3.2. Foot PDR

The gait cycle of pedestrians is regular and can provide rigid con-
straints to the velocity of the feet. As shown in Fig. 2, the gait cycle of
pedestrians can be divided into two-phase here. According to the right
foot’s motion, the gait cycle consists of the stance fundamental system.
In the swing phase, the foot swing and moves. In the stance phase, the
foot is attached to the floor and nearly does not move. The velocity
of the foot in the stance phase is nearly zero [27]. This information
can be detected based on IMU measurements and provide observation
of velocity for correcting system state. Moreover, the middle-time of
the stance phase, which is marked in Fig. 2 is suitable to capture the
image since the angular velocity and velocity are nearly zero which
helps to reduce the motion blur. The foot PDR estimate trajectory use
measurements of foot-mounted IMU.

In foot PDR algorithm, the IMU data is processed through INS
mechanization to compute the pose and velocity. In order to adopting
3

the zero-velocity state to eliminate accumulated drift, the error-state
Kalman filter (ESKF) will be utilized in this paper. The system state is
a 15-dimensional vector defined as following: navigation system

𝑿𝑡 = [𝒕𝑇𝑛𝑏𝑡 ,𝑹
𝑇
𝑛𝑏𝑡

, 𝒗𝑇𝑛𝑏𝑡 , 𝒃
𝑇
𝑎 , 𝒃

𝑇
𝑔 ]

𝑇 (3)

Here, 𝑹𝑛𝑏0 and 𝒕𝑛𝑏0 same to the definition given before, 𝒗𝑛𝑏𝑡 ∈ R3

represent velocity of IMU in the navigation frame. The 𝒃𝑎 ∈ R3 and 𝒃𝑔 ∈
R3 are bias of accelerometer and gyroscope measurement respectively.

In foot-mounted IMU-based navigation, the zero-velocity state dur-
ing the stance phase can be adopted to suppressing the accumulation
drift of INS mechanization. Generally, the generalized likelihood ratio
test can detect the zero-velocity state (GLRT) [27] using accelerometers
and gyroscopes without additional equipment required. When the zero-
velocity testing passed, a pseudo observation that the IMU velocity
equal to zero could be employed in the error-state Kalman filter (ESKF).

Moreover, to eliminate the drift on altitude, which is significantly
affect the accuracy of foot-mounted INS, the horizontal motion detec-
tion method and altitude correction technique are employed [21]. The
horizontal motion detection is based on the change of vertical position.
When the vertical position change in a step is lower than a threshold,
this step is recognized as horizontal motion mode. If a horizontal
motion is detected, the altitude correction uses the altitude of the
previous keyframe to constraint the altitude of the current keyframe.
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Fig. 2. One gait cycle of the right foot. The left foot and right foot are marked as red and blue, respectively. The moment is denoted as Middle-time with the most less angle
velocity in the stance phase and adapted to capture an image. And image captured at each moment shown in gait cycle are shown. The camera mounted at the right foot (blue).
In this paper, the ZUPT-aided ESKF is employed to provide the
initial value and the constraint between the adjacent keyframe pair
for pose graph optimization in the back-end block. Furthermore, when
the vision system degraded, the Foot PDR can estimate trajectory
alone over a lengthy period. This function significantly improves the
robustness of the proposed system.

3.3. Visual processing

The images collected by the camera are selected based on inertial
measurements first. This process is denoted as keyframe selector in
Fig. 1. In more detail, during each sequence stance phase, the image
with minimum angle velocity will be marked as the keyframe of this
period. The selector will select the image captured at middle-time,
which is illustrated in Fig. 2. This method of selecting a keyframe is
different from a traditional visual-based system. The traditional system
selects a keyframe based on parallax and can automatically select more
keyframes during a turn to maintain accuracy. However, due to the
special keyframe selection mechanism, the proposed system should take
shorter steps around corners to maintain accuracy.

Thus, the following modules will process only the keyframe image
in loop-closure-detection and feature tracking. Then, the feature points
are detected, and descriptors of each feature point are calculated [28].
In the feature tracker block, corresponding points are associated based
on the descriptors and two-frame geometry constraints [29]. The loop
closure detection module is a two-stage validation. First, the similarity
score [30] between each keyframe is calculated. The matching frames
should have a high similarity score. Then, the pair of keyframes with
high similarity are examined by the geometry constraint of points in
those frames. After finding the matching keyframes, the relative pose
is calculated and sent to the PGO module. Meanwhile, matching feature
points are sent to the feature point manager.

3.4. Loop closured aided pose graph optimization

Since the relative pose function as a measurement in the section,
both the uncertainty and the observed value should be calculated. The
4

relative pose could be easily obtained through the equation, which
could be written as follows:
{

𝑹𝑏𝑖𝑏𝑖+1 = 𝑹𝑇
𝑛𝑏𝑖

𝑹𝑛𝑏𝑖+1
𝒕𝑏𝑖𝑏𝑖+1 = 𝑹𝑇

𝑛𝑏𝑖
(𝒕𝑛𝑏𝑖+1 − 𝒕𝑛𝑏𝑖 )

(4)

where, 𝑹𝑛𝑏𝑖 , 𝒕𝑛𝑏𝑖 represent pose of 𝑖th keyframe represented in the
navigation frame. Meanwhile, the covariance matrix of the relative
pose {𝑹𝑏𝑖𝑏𝑖+1 , 𝒕𝑏𝑖𝑏𝑖+1}, which calculated from the pose of IMU at 𝑖th and
𝑖+1th keyframes, are needed for ensure the uncertainty of the relative
pose constraint. However, in the classical Kalman filter, the covariance
matrix of 𝑖th and 𝑖+1th keyframes are not independent of a probability
point of view.

Aim to solve this problem, a technique introduced in the stochas-
tic cloning [31] can be utilized. Through adopting stochastic cloning
method, the extended covariance matrix of 𝑖th and 𝑖 + 1th keyframes
could be written as:

𝑷 𝐸
𝑡+1 =

[

𝜮𝛿𝑋𝑖+1𝛿𝑿𝑖+1
𝜮𝛿𝑿𝑖+1𝛿𝑿𝑖

𝜮𝛿𝑿𝑇
𝑖+1𝛿𝑿𝑖

𝜮𝛿𝑿𝑖𝛿𝑿𝑖

]

. (5)

where, 𝛴𝛿𝑿𝑖+1𝛿𝑿𝑖+1
and 𝛴𝛿𝑿𝑖𝛿𝑿𝑖

are represent covariance matrix of the
system error state at current and previous moment. And, 𝜮𝛿𝑿𝑖+1𝛿𝑿𝑖
represent the covariance between current and previous moment, which
could be calculated through following equation:

𝜮𝛿𝑿𝑖+1𝛿𝑿𝑖
=

(

∏

𝑡∈{𝑖,𝑖+1}
𝜱𝑡

)

𝜮𝛿𝑿𝑖𝛿𝑿𝑖
(6)

Here, 𝑡 ∈ {𝑖, 𝑖 + 1} meant all IMU measurements in the period from 𝑖th
to 𝑖 + 1th keyframe, 𝜱𝑡 represents the state propagation matrix at 𝑡
moment.

In order to construct the loop-closure constraint, the relative pose
between matching keyframes needs to be calculated. Firstly, the cor-
responding points in the paired keyframe could be matched through
feature point descriptors. Then, the relative pose could be easily esti-
mated through a two-frame stereo bundle adjustment. The number of
inlier feature points in this bundle adjustment should be larger than a
threshold. Perhaps enough feature points are reconstructed, the relative
pose of these two frames is adopted in the next stage.

Two components include the relative pose constraint and the alti-
tude constraint, contained in the optimization problem.
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Fig. 3. Coordination transformation between camera, IMU, the navigation frame, and the world frame. Red, green, and blue lines in each coordinate frame represent the x,y, and
𝑧-axis, respectively.
The cost function of relative pose constraint used to modeling the
information from the INS and the loop closure detection. It can be
written as:

𝑒𝑟𝑒𝑙(𝑹𝑛𝑏𝑖 , 𝒕𝑛𝑏𝑖 ,𝑹𝑛𝑏𝑗 , 𝒕𝑛𝑏𝑗 ) =

[

𝐿𝑜𝑔(𝑹𝑇
𝑏𝑖𝑏𝑗

𝑹𝑇
𝑛𝑏𝑖

𝑹𝑛𝑏𝑗 )
𝒕𝑏𝑖𝑏𝑗 −𝑹𝑇

𝑛𝑏𝑖
(𝒕𝑛𝑏𝑗 − 𝒕𝑛𝑏𝑖)

]

(7)

where, 𝐿𝑜𝑔(⋅) represent the converting from 𝑆𝑂(3) to so(3); 𝑹𝑏𝑖𝑏𝑗 and
𝒕𝑏𝑖𝑏𝑗 are the relative rotation and relative position between 𝑖th and 𝑗th
keyframe respectively.

The information obtained from the horizontal detection is formu-
lated as the altitude constraint, which meant the altitude of the adjacent
keyframe is similar. So, its cost function can be defined as following:

𝑒𝑎𝑙𝑡(𝒕𝑛𝑏𝑖 , 𝒕𝑛𝑏𝑗 ) = 𝒕𝑛𝑏𝑖 [2] − 𝒕𝑛𝑏𝑗 [2] (8)

here, 𝒕𝑛𝑏𝑖 [2] and 𝒕𝑛𝑏𝑗 [2] represented z components of 𝒕𝑛𝑏𝑖 and 𝒕𝑛𝑏𝑗 respec-
tively.

To summarize, the target function of global graph optimization,
which is illustration in Fig. 4, can be written in following form:

{𝑹𝑛𝑏𝑖 , 𝒕𝑛𝑏𝑖}∀𝑖 = arg min
{𝑹𝑛𝑏𝑖 ,𝒕𝑛𝑏𝑖 }∀𝑖

{

𝑬𝑖𝑛𝑠 + 𝑬𝑙𝑜𝑜𝑝 + 𝑬𝑎𝑙𝑡
}

(9)

where 𝑬𝑖𝑛𝑠 and 𝑬𝑙𝑜𝑜𝑝 represent the relative pose constraint, which
defined in (7), based on INS output and loop closure respectively,
5

𝑬𝑎𝑙𝑡 represent the altitude constraint, which defined in (8), between
adjacent keyframe.

3.5. Visual–inertial bundle adjustment

This section discussed the detail of the visual–inertial bundle
adjustment(visual–inertial BA) module, which gives the final result in
the proposed algorithm. The initial poses of keyframes are given by the
method expressed in Section 3.4. The initial position of feature points
represented in the navigation frame should be estimated through initial
poses. In practice, feature points observed less than three times or
without enough parallax will be ignored. Then, the position of feature
points estimates by minimizing re-projection residual based on given
camera poses.

The XYZ parameterization of feature points is utilized in visual–
inertial BA. The cost function of re-projection error can be written as:

𝑒𝑝𝑟𝑜𝑗 (𝒑𝑛𝑘,𝑹𝑛𝑏𝑖 , 𝒕𝑛𝑏𝑖 )

= 𝒑̂
𝑐𝐿𝑖
𝑘 −Π(𝑹𝑙𝑖𝑹𝑇

𝑛𝑏𝑖
(𝒑𝑛𝑘 − 𝒕𝑛𝑏𝑖 ) + 𝒕𝑙𝑖)

(10)

Here, Π(⋅) is the function project point in the camera frame to the
image plane, which is provided at (2). The 𝑹𝑙𝑖 and 𝒕𝑙𝑖 represent extrinsic
parameters between the left camera and the IMU, which should be
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Fig. 4. Illustration of the pose graph optimization definition.

Fig. 5. Illustration of visual–inertial bundle adjustment.
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calibrated before experimentation. Moreover, the 𝒑̂
𝑐𝐿𝑖
𝑘 represent the

position of 𝑘th feature point at 𝑖th keyframe in left camera.
The pre-integration technique is utilized to modeling the IMU mea-

surements. Furthermore, the zero-velocity observation is added to the
cost function to limit the drift of velocity. Thus, the cost function using
the IMU measurement can be written as:

𝑒𝑖𝑚𝑢(
⎡

⎢

⎢

⎣

𝑹𝑛𝑏𝑖
𝒕𝑛𝑏𝑖
𝒗𝑛𝑏𝑖

⎤

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎣

𝑹𝑛𝑏𝑖+1
𝒕𝑛𝑏𝑖+1
𝒗𝑛𝑏𝑖+1

⎤

⎥

⎥

⎥

⎦

) =
[

𝑒𝑝𝑟𝑒−𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛
𝒗𝑧𝑒𝑟𝑜 − 𝒗𝑛𝑏𝑖+1

]

(11)

here, 𝑒𝑝𝑟𝑒−𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 denote the cost function of pre-integration on man-
ifold [32], 𝒗𝑧𝑒𝑟𝑜 = [0, 0, 0]𝑇 meant the zero velocity vector.

Another constraint utilized in this stage is the distance constraint
between corresponding points. Here, those matching are established
through loop-closure. Compare to the way directly represent corre-
sponding points tracked by loop closure as the same point, add a
distance constraint between those points can reduce the effect of wrong
matching. Especially, the wrong matching is hard to avoid in practice.
If 𝑖th and 𝑗th feature points are the same points observed twice from
paired keyframes generated by loop detection, the distance between
them should be lower than a certain threshold. This cost function can
be written as:

𝑒𝑑𝑖𝑠𝑡(𝒑𝑛𝑖 ,𝒑
𝑛
𝑗 ) = ‖𝒑𝑛𝑖 − 𝒑𝑛𝑗‖2 (12)

here, ‖ ⋅ ‖2 represents 𝑙2-norm.

Algorithm 1: Visual–Inertial Bundle Adjustment

Input: {𝑹𝑛𝑏𝑖 , 𝒕𝑛𝑏𝐼 }∀𝑖, {𝒑̂
𝐶𝐿
𝑖

𝑘 , 𝒑̂
𝐶𝑅
𝑖

𝑘 },C
Output: {𝑹𝑛𝑏𝑖 , 𝒕𝑛𝑏𝑖}∀𝑖, {𝒑

𝑛
𝑘}∀𝑘

1 for ∀𝑘 do
2 Triangulate( 𝒑𝑛𝑘);
3 end
4 {𝑹𝑛𝑏𝑖 , 𝒕𝑛𝑏𝑖}∀𝑖 ← arg min

{

𝑬𝑝𝑟𝑜𝑗 + 𝑬𝑖𝑚𝑢 + 𝑬𝑎𝑙𝑡
}

;
5 for ∀𝑘 do
6 if AvgPixelError(𝒑𝑛𝑘) > 𝛾𝑝𝑖𝑥𝑒𝑙 then
7 RemoveObservation(𝒑𝑛𝑘);
8 else
9 RemoveRobustKernel(𝒑𝑛𝑘);
10 end
11 end
12 for ∀𝑗, 𝑘 ∈ C do
13 if ‖𝒑𝑛𝑗 − 𝒑𝑛𝑘‖2 < 𝛾𝑑𝑖𝑠𝑡 then
14 AddDistCost(𝒑𝑛𝑗 ,𝒑

𝑛
𝑘);

15 end
16 end
17 Use (13) ;// Final fine tuning

The total definition of visual–inertial bundle adjustment is illus-
trated in Fig. 5, and this problem can be formulated as follows:

{𝑅𝑛𝑏𝑖 , 𝑡𝑛𝑏𝑖}∀𝑖 = arg min
{𝑅𝑛𝑏𝑖 ,𝑡𝑛𝑏𝑖 }

{

𝑬𝑝𝑟𝑜𝑗 + 𝑬𝑖𝑚𝑢 + 𝑬𝑑𝑖𝑠𝑡 + 𝑬𝑎𝑙𝑡
}

(13)

here, 𝑬𝑝𝑟𝑜𝑗 represents the re-projection constraint defined in (10), 𝑬𝑖𝑚𝑢
represents the constraint based on IMU measurements defined in (11),
and 𝑬𝑑𝑖𝑠𝑡 represents the distance constraint for corresponding feature
point pairs defined in (12). The 𝑬𝑎𝑙𝑡 same to the definition in (9).

In this method, a multi-stage estimation workflow is adopted to
obtain robust and accurate poses estimation. The pseudo-code can
be found at Algorithm 1. It is noticing that the optimization in line
4 at Algorithm 1 not employed the constraint of the distance be-
tween corresponding feature points detected by loop-closure keyframes.
Meanwhile, robust kernel functions are adopted to avoid the effect of
abnormal observation.
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Fig. 6. Device installment. The stereo camera is tightly mounted to the right foot.

4. Test and result

This section is organized as follows. Section 4.1 describes the device,
environment and coordinate frame alignment strategy. Section 4.2
given the result of experiment.

4.1. Test platform and experiment scenario

Fig. 6 shows the test platform. A stereo camera(mynt-1200) is used
for data collection, which is marked by a green rectangle in Fig. 6. It
consists of two RGB cameras with 1280 × 720 resolution and a MEMS
IMU (Bosch BMI088). The stereo camera is mounted on the right foot
and connected to a laptop computer through a USB cable. Image and
motion measurements are synchronized with each other in the embed-
ded processor of the stereo camera. The data rate of the stereo image
and inertial measurement is 20Hz and 200Hz, respectively. The camera
should be tightly mounted to the foot over the whole experiment, to
ensure the foot-mounted PDR’s performance does not degrade.

The method is evaluated in two scenarios include an office building
and an underground parking lot.

The office building is shown in Fig. 7 which is a real office environ-
ment. This scenario aims to validate the performance of the proposed
method in an environment with multi-floor. The dimensions of the
floor map, as shown in Fig. 7(a), were approximately 86 m × 22 m.
The experimental path marked by a group of reference points includes
corridors, offices, and stairwells. The reference points are marked by
pasting marks on the ground of the experiment route used to evaluate
the proposed system’s performance. A Leica manual total station mea-
sures the coordinates of these points. Thus, its accuracy is better than
5 mm on the plane.

Fig. 8 shows the underground parking lot. It is used to evaluate the
positioning performance in another type of environment. There are 17
reference points with known coordinates, and 4 of them function as
control points to align the navigation frame and the world frame. These
reference points are distributed on a rectangle area of approximately 40
m × 20 m.

It is worth noticing that the output of the visual–inertial bundle
adjustment is the trajectory represented in the navigation frame since
the proposed system is without adopting external information about
the world frame. However, to evaluate the accuracy, the estimated
trajectory should be represented in the world frame. In our experiment,
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Fig. 7. The office building and reference points. (a) The layout of 2nd floor. (b) The layout of 3rd floor. (c) Marker of the reference points. (d) The corridor scenario. (e) The
office scene. (f) The stairwell.
Fig. 8. The underground parking lot environment.
we select four reference points as control points. The transformation be-
tween the navigation frame and the world frame, denoted as {𝑅𝑤𝑛, 𝑡𝑤𝑛},
could be obtained through the alignment control points. It can be
formulated to an optimization problem shown as follow,

{𝑅𝑤𝑛, 𝑡𝑤𝑛} = arg min
{𝑅𝑤𝑛 ,𝑡𝑤𝑛}

∑

𝑅𝑤𝑛𝑃
𝑛
𝑖 + 𝑡𝑤𝑛 − 𝑃𝑤

𝑖 (14)

where 𝑃 𝑛
𝑖 represent the coordinate of the control point in the navigation

frame, 𝑃𝑤
𝑖 represents the coordinate of the control point in the world

frame. After the transformation estimated, the position error at 𝑖th
reference point is defined as:

𝐞 = ‖𝑅 𝑃 𝑛 + 𝑡 − 𝑃𝑤
‖ (15)
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𝐢 𝑤𝑛 𝑖 𝑤𝑛 𝑖 2
where ‖ ⋅ ‖2 represent L2 norm.

4.2. Experimental results

The experiment results in the office building and the underground
parking lot are provided. And the case called Ignore is presented to
verify the performance when the vision system is invalid. Finally, the
performance with/without visual–inertial bundle adjustment is com-
pared.

4.2.1. The office building
The estimated trajectory of the proposed algorithm is denoted as

Trajectory, and the measurement coordinates of the reference points



Measurement 199 (2022) 111559N. Xiaoji et al.
Fig. 9. The trajectories and reference points in 2nd floor and 3rd floor. The black line
represents trajectory estimated through the proposed method. The red line represents
the Foot PDR only results. (The office building).

Fig. 10. Position Error(3D) and horizontal position error(2D). The blue line and green
line represent 3D and 2D respectively. (The office building).

Fig. 11. CDF of the position error and horizontal position error. The green line and
blue line represent 3D and 2D, respectively. (The office building).

are denoted as Reference Point in Fig. 9. Since the foot PDR trajectory
is represented in the local navigation frame, the first two frames are
utilized to align this trajectory and the reference points. The aligned
trajectory of foot PDR is denoted as FootPDR in Fig. 9. The position
9

Fig. 12. Trajectories and reference points in the underground parking. The black line
represents the estimated trajectory. The red line represents the Foot PDR result. The
blue point represents reference points used to calculate position error. Furthermore,
reference points 0,7,9,15 function as control points for the alignment coordinate frame.
(The underground parking lot).

Fig. 13. Position error at each reference point. (The underground parking lot).

error of foot PDR accumulated quickly because of the yaw’s drift.
However, the yaw’s drift cannot be correct without external informa-
tion. Fig. 10 illustrated the coordinate error at each reference point,
where 𝑥-axis represents the indexing of the reference point, and 𝑦-
axis represents the position error. And Fig. 11 shown the cumulative
distribution function (CDF) of the position error. The position error of
coordinates in three-dimensional is denoted as 3D, and the horizontal
position error is denoted as 2D. The mean values of the 3D position
error and horizontal position error of the proposed algorithm is 0.237 m
and 0.187 m, respectively.

4.2.2. The underground parking lot
The trajectory of the experiment taken in the underground parking

lot is shown in Fig. 12. Reference Points and the index are illustrated in
Fig. 12. The reference points utilized for alignment coordinate frames
are at the vertex of the rectangle trajectory(0,7,9,15). Fig. 13 shown the
position error at each reference point. Moreover, the average position
error of all reference points in this scenario is 0.227 m.

4.2.3. The ignore case
In order to test the performance when the visual system is invalid

in short periods, the case called Ignore is taken. In this case, we
ignored some images to mimic the visual blockages in real-world harsh
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Fig. 14. The trajectory and reference points represent in 3D. The blue line represents the trajectory. The red point represents reference points, and the yellow point represents
control points use to align the world frame and the navigation frame. The green box shows the ignored area that mimic the visual failure. (The office building).
Fig. 15. Position error compare between Full case and Ignore case. (The office
building).

Fig. 16. CDF of position error of the Full case and the Ignore case. The blue and green
line represent Full case and Ignore case, respectively. (The office building).

Table 1
Position error of the proposed system in Full case and Ignore case.

Position error (m)

Mean 70% 80% 90% Max

Full 3D 0.237 0.274 0.286 0.333 0.491
2D 0.187 0.195 0.222 0.249 0.483

Ignore 3D 0.286 0.386 0.403 0.422 0.507
2D 0.229 0.286 0.316 0.345 0.463

scenarios. In detail, we select images captured in particular areas to
be ignored, rather than randomly ignored some images in the whole
dataset. We named these areas as ignore areas, which are marked by
green boxes in Fig. 14. These ignore areas are set in the same location
at the corners of the corridor on different floors. This situation is
representative and easy to occur because the visual system is easy to
fails at narrow corners caused by poor texture and image blur.
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Fig. 17. CDF of the position error with/without visual–inertial BA. The result
with/without visual–inertial BA denoted as BA and PGO respectively. (The office
building).

Figs. 15 and 16 was given the comparison of position error of the
trajectories without/with the Ignore area. Table 1 gave the position
error of the full case and the ignore case for clear comparison. The row
in the table marked by 3D and 2D represents the position error and
the horizontal position error. The column marked by 70% represents
that 70% of position errors are less than this value. Moreover, the
columns are marked by 80% and 90% with similar definitions. The
mean position error and mean horizontal position error of the Ignore
case are 0.286 m and 0.229 m. The horizontal position error of the
Ignore case is comparable to the results of the Full case. The Ignore
case shows that the proposed system can achieve acceptable positioning
performance even without visual observation in some places during
data collecting for mobile mapping.

4.2.4. The effect of visual–inertial bundle adjustment
In order to verify the necessity of VIBA, the compare of result

with/without VIBA are provided. The result without BA is denoted as
PGO (abbreviation of pose-graph optimization), and the result with BA
is denoted as BA. Fig. 17 shown the CDF of BA and PGO. Moreover,
the average position error of BA and PGO is 0.237 m and 0.308 m,
respectively. The position accuracy of BA is significantly improved.
Furthermore, benefit from the adoption of a camera in this system, a
sparse point cloud could be generated by the proposed solution. This
sparse point cloud represents the set of reconstructed feature points
detected in image sequences. Fig. 18(a) and (b) given the left view and
the top view of the point cloud of BA, and Fig. 18(c) given the top view
of the point cloud of PGO. It can be seen from Fig. 18 that although
the point cloud with BA contains a small number of abnormal points,
the point cloud can still reflect some outlines of the building, such as
ceiling, walls, and corridors. However, the point cloud of PGO is worse,
i.e., those line features became scattered. This is because the pose-graph
optimization only optimization the relative pose between keyframes.
The co-visible feature point by multiple keyframes has not been utilized
sufficiently in pose-graph optimization. This result indicated that the
visual–inertial BA is necessary for this solution.
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Fig. 18. Point cloud and the estimated trajectory of the proposed algorithm. (a) side view of BA point cloud. (b) top view of BA point cloud. (c) top view of PGO point could.
Red points represent feature points reconstructed via visual measurement and blue lines represent estimated trajectory. (The office building).
4.3. Discussion

In this section, we discuss the position and orientation estimation
performance of the proposed system from the accuracy and robust-
ness. Firstly, we evaluate the positioning performance of the proposed
method in two typical scenarios in Sections 4.2.1 and 4.2.2. The aver-
age position error in the office building and the underground parking
lot is 0.237 m and 0.227 m, respectively. Secondly, we analyze the
robustness of the proposed method at the visual blockage, which is
common in harsh real-world scenarios. As mentioned in Section 4.2.3,
the proposed method does not show a significant increase in position
error even if the vision system is invalid in some sub-area.

Furthermore, we demonstrate the feasibility of the proposed method
with experimental results in Section 4.2.4. The visual–inertial bundle
adjustment (VIBA) block is computationally expensive, but necessary.
The VIBA block not only improve the position accuracy in the nav-
igation frame, but also the relative pose accuracy, which is vital in
reconstructing vision maps such as visual feature maps, semantic maps,
etc.

5. Conclusion

A foot-mounted visual–inertial indoor POS is proposed in this study.
The foot-mounted IMU can provide accurate relative poses when the
visual-based SLAM system fails. The camera can detect loop-closures, so
as to eliminate error accumulation of the foot PDR. By combining these
two systems, the proposed method can provide a globally consistent
mapping capability without external dependency.

According to the field experiments described in this paper, this
indoor POS solution is practical and reliable for infrastructure-free
environments. The proposed system achieves position errors of 0.237 m
and 0.227 m in the typical office building and the underground parking
lot, respectively. Meanwhile, it can maintain the positioning accuracy
of 0.3 m in the mimic visual gaps (i.e., the Ignore case). This result
proves that the proposed system could provide acceptable performance
even when the vision system crashed for short term. In addition, the
necessity of VIBA was verified in the office building case. Using visual–
inertial bundle adjustment (VIBA) can reduce the position error from
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0.308 m to 0.237 m, and the point cloud quality can be improved
effectively.

For future works, we intended to extend the proposed system
by adding a hand-held camera that provides more information and
achieves higher accuracy by linking to the foot-mounted sensor appro-
priately. Furthermore, a method to achieve distributed mapping system
based on foot-mounted visual–inertial sensors will be considered for
wide-area indoor MMS.
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