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A B S T R A C T   

The odometer (ODO) and non-holonomic constraint (NHC) are disturbed to a greater extent for wheeled robots 
by more serious vibrations and bumping compared to commercial cars. However, there have been few studies 
regarding the performances of different ODO/NHC measurement models for wheeled robot GNSS/INS posi-
tioning. In this study, the distance increment model was applied to not only the ODO measurement but also the 
NHC constraint. The measurement accuracy and robustness of this proposed 3D distance increment measurement 
versus conventional velocity measurement models were theoretically analyzed, and field tests evaluated in terms 
of positioning accuracy and robustness for wheeled robots. In the short-term (i.e., 1 min) GNSS outage test, the 
forward, lateral and vertical positioning drifts of the distance increment model decreased by 67 %, 15 %, and 39 
%, respectively; and it also demonstrated superior robustness in the cases of carrier vibration, emergency stops, 
and passing speed bumps.   

1. Introduction 

With the continuous development of the robot industry, achieving 
low cost, continuity, high precision, and high robustness for wheeled 
robot positioning is required. The global navigation satellite system 
(GNSS) positioning technology provides locations that do not diverge 
with time. However, in scenarios with trees and high buildings blocking, 
where robots usually work, the GNSS positioning is severely degraded or 
even unavailable [1]. An inertial navigation system (INS) based on an 
inertial measurement unit (IMU) can output positioning results with 
high-frequency and continuity but diverges over time [2]. Although 
GNSS/INS integrated navigation solution utilizes the advantages of the 
two systems, a GNSS/INS system composed of a low-cost micro-elec-
tromechanical system (MEMS) IMU, which is commonly used in robots, 
can only maintain the positioning accuracy for a very short time when 
GNSS is unavailable [3,4]. Therefore, other sensors are needed for 
GNSS/MEMS IMU systems to provide continuous and accurate posi-
tioning in GNSS-denied environments. 

A wheeled odometer (ODO), which naturally measures the distance 
increment during a period in the forward direction and also provides the 
forward speed [5], is an excellent auxiliary sensor for wheeled carriers. 
The motion of a wheeled carrier on a surface is governed by non- 

holonomic constraint (NHC). When a wheeled carrier does not slip or 
skip, it only moves forward [6]. Therefore, NHC also provides speed 
information for wheeled carriers, i.e., the lateral and vertical speeds are 
zero. ODO and NHC are mostly employed together to constrain the 
carrier’s three-dimensional (3D) speed. Besides the velocity constraint, 
NHC can be extended to constrain the vehicle’s movement in lateral and 
vertical directions to zero. Therefore, NHC and ODO distance increment 
measurement can be employed together to provide 3D distance incre-
ment measurement. Thus, the velocity and distance increment mea-
surement of ODO/NHC can be effective and economical auxiliary 
information for wheeled carriers. 

ODO/NHC velocity measurements have been widely applied in land 
vehicle navigation [7–9] and railway tracking [10] to enhance GNSS/ 
INS positioning accuracy. Among these studies, the authors of [7] fused 
the 3D velocity observation of the carrier with the MEMS IMU/GNSS 
integrated navigation system. The GNSS outage test proved that velocity 
assistance could significantly improve the positioning and heading ac-
curacy of the system. The articles [11] and [12] converted the ODO/ 
NHC measurements to the 3D displacement increment in the earth- 
centered-earth-fixed frame (e-frame) and local navigation frame (n- 
frame), respectively, and provided a 3D position constraint for the INS. 
In [13], the researchers proposed an INS/laser Doppler velocimeter 
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(LDV) integration algorithm. The sum of the velocity measurement, 
equivalent to the distance increment measurement, was employed to 
fully use the NHC/LDV measurements. In wheeled robot positioning, 
there are relatively few studies of ODO/NHC-assisted INS. Yousuf et al. 
[14] projected the ODO/NHC velocity using the heading angle measured 
by a gyroscope and fused the measurement with the INS for two- 
dimensional (2D) positioning. Zhang et al. [15] designed an ODO/ 
NHC velocity auxiliary algorithm with steering angle compensation that 
can be applied to all-wheel steering robot positioning. The displacement 
increment in a 2D plane was calculated from the dual odometer in [16] 
for mobile robot localization. However, they did not fuse the ODO 
measurement with an INS. 

Considering the different features of the two ODO/NHC measure-
ments, a few researchers compared the navigation accuracy of the two 
measurement models. Ouyang et al. [17] analyzed ODO pulse increment 
and pulse speed measurement models based on a navigation-level IMU 
for land vehicles. The simulation and field test results showed that the 
pulse velocity measurement model outperformed the pulse increment 
model. However, in the pulse increment model, the authors employed 
distance increment measurement only in the forward direction, whereas 
still NHC velocity constraints in the lateral and vertical directions. Wu 
et al. [18] compared the velocity and displacement increment mea-
surement models of a wheel-mounted MEMS IMU-based dead reckoning 
system. They obtained the virtual odometer measurement based on a 
wheel-mounted IMU rather than a wheel encoder. The test results 
indicated that the positioning accuracies of the two models were roughly 
equivalent, whereas the displacement increment model exhibited im-
munity to the lever arm error. Considering the different error charac-
teristics between the virtual wheel-IMU odometer and a traditional 
wheel encoder measurement, this conclusion in [18] may not be suitable 
for the standard wheel-encoder odometer. Besides, authors in [17,18] 
compared ODO/NHC/IMU long-term dead reckoning accuracy. But the 
dead reckoning time of wheeled robots is usually short because GNSS 
mainly undergoes short-term outages in the work scene of wheeled 
robots. 

The literature survey shows the ODO/NHC velocity and distance 
increment measurements have been applied and compared in land 
vehicle navigation by some researchers. Previous studies have drawn 
some conclusions on the two models for land vehicles in long-distance 
navigation. Although wheeled robots are also wheeled carriers, they 
yield more variable speed and more arbitrary trajectories than land 
vehicles. Besides, the short-term dead reckoning accuracy is more con-
cerned for wheeled robots as GNSS signals interrupt only for a short time 
in their working place. Therefore, the above conclusions for land vehi-
cles cannot be extended to wheeled robots. However, rare literature 
studied the positioning accuracy of the two ODO/NHC measurement 
models for wheeled robots. It is necessary to analyze the accuracy of the 
two models in wheeled robot navigation. 

In addition, wheeled robots typically have a simple structure and an 
imprecise buffer system. As a result, they are more prone to significant 
vibrations and swings. When passing obstacles, such as a speed bump, 
wheeled robots will vibrate and jolt severely, which breaks their kine-
matic hypothesis. Therefore, the robustness of the ODO/NHC mea-
surement model is equally significant for wheeled robot positioning. 
However, the robustness of the models has received little attention and 
research. 

Based on the above consideration, we conducted the following 
research to analyze the positioning accuracy and robustness of the ODO/ 
NHC velocity and distance increment measurement models for wheeled 
robot navigation. First, we constructed ODO/NHC velocity and distance 
increment measurement models in the carrier frame based on the GNSS/ 
INS integration error state model. Then the ODO/NHC velocity and 
distance increment measurement errors in wheeled robots are analyzed. 
Additionally, adequate field tests were conducted on a mobile wheeled 
robot to evaluate the positioning accuracy in short-term GNSS outages 
and robustness of the two ODO/NHC measurement models. The main 

contributions of this study are as follows:  

• NHC is extended as a distance increment constraint, ODO/NHC 
distance increment measurement model for GNSS/INS integration is 
constructed in the carrier frame.  

• The ODO speed and distance increment measurement accuracy is 
quantitatively studied, and the robustness of ODO/NHC velocity and 
distance increment measurement models are analyzed based on the 
motion characteristics of wheeled robots. 

• Adequate field tests are conducted to evaluate the positioning ac-
curacy of the ODO/NHC velocity and distance increment models, 
and dedicated tests are designed to evaluate the robustness of the two 
models. 

The remainder of this paper is organized as follows. Section 2 con-
structs the two ODO/NHC measurement models and analyzes the errors 
of the two ODO/NHC auxiliary information. The field tests and data 
processing methods are described in Section 3. Section 4 presents and 
discusses the results of the field experiment. Finally, this paper is 
concluded in Section 5. 

2. Methodology 

This section presents the established coordinate system, describes 
the two ODO/NHC measurement models and analyzes their measure-
ment errors. It is worth mentioning that the derived ODO/NHC mea-
surement models in this study only apply to wheeled robots that comply 
with NHC, for example, wheeled robots under the Ackermann Motion 
model or Corner Steering Motion model [19]. 

The wheeled carrier in our experiments complies with the Corner 
Steering Motion model. As shown in Fig. 1, the carrier has six wheels, 
with two middle wheels non-steering. We obtained the equivalent 
odometer at the center of the non-steering axis by averaging the 
odometer measurements of the two middle wheels. We define the point 
at which the center of the non-steering axis is projected onto the ground 
as the origin of the vehicle frame (v-frame). The x-axis of the v-frame 
points in the forward direction of the vehicle, and the points in the y- and 
z-axes in the right and down directions, respectively. The b-frame de-
notes the IMU body frame, where the origin is located at the geometric 
center of the IMU. The positioning results are represented in the local 
navigation frame with the exact origin as the b-frame. The three axes 
points are in the north, east, and down directions, respectively. In 
addition, the IMU installation angles denote the rotational angles be-
tween the b- and v-frames, of which the direction cosine matrix (DCM) is 
expressed as Cv

b. The displacement between the origins of the b- and v- 
frames is the lever arm lbbv, which is measured in the b-frame. 

Fig. 1. Definition of the coordinate systems.  
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2.1. Error state model 

The error-state Kalman filter, the most popular estimation method in 
GNSS/INS integration, is utilized in this study to fuse the measurements. 
We augment the sensor errors into the state vector with position error 
δrn, velocity error δvn, and attitude error θ when constructing the error 
state model of the Kalman filter. Generally, the IMU scale factor errors 
are absorbed in the bias errors and are difficult to estimate because the 
MEMS IMU usually has poor bias stability. Therefore, we only model the 
IMU bias errors (i.e., the gyroscope bias errors δbg and accelerometer 
bias errors δba). The scale factor between the odometer pulse and vehicle 
motion information is difficult to measure accurately. Hence, we 
augment the scale factor error δk, as a system state to be estimated. The 
total system error state is constructed as. 

δx =
[

θT (δrn)
T

(δvn)
T δbT

g δbT
a δk

]T
(1) 

The attitude errors are defined as. 

Ĉ
n
b = Cn

b(I − (θ × ) ) (2) 

where θ is the rotation vector corresponding to the attitude error, Cn
b 

is the DCM of the true attitude, and Ĉ
n
b is the DCM of the estimated 

attitude. 
Other state errors are defined as. 

δx = x − x̂ (3) 

where δx is the error state vector, x is the true state, and ̂x denotes the 
estimated state with the error. 

First, we establish an error differential equation of the state vector to 
propagate the error state. The error differential equations of position, 
velocity, and attitude are expressed as. 

δṙn =Frrδrn+δvn

δv̇n =− Cn
bδf b − Cn

b

(
f b×

)
θ −

(
2ωn

ie+ωn
en

)
×δvn+vn×

(
2δωn

ie+δωn
en

)
+δgn

l

θ̇=−
(
ωb

ib×
)
θ − δωb

ib+Cb
n

(
ωn

ie+ωn
en

)

(4)  

where ωn
ie and ωn

en denote the earth’s rotational angular velocity and the 
angular velocity of the n-frame relative to the e-frame, respectively, gn

l is 
the gravitational acceleration vector, which can be calculated using the 
latitude and height [20], f b and ωb

ib are the acceleration and angular 
velocity of the IMU, respectively, and δ⋅ is the corresponding state error. 
In this study, the acceleration error δf b and angular velocity error δωb

ib 
are equivalent to the bias error δba and δbg, respectively. Frr is the co-
efficient matrix of the position error, the components of which are as. 

Frr =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−
vD

RM + h
0

vN

RM + h
vEtanφ

RN
+ h −

vD + vN tanφ
RN + h

vE

RN + h
0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(5)  

where vN, vE, and vD are the velocity of the IMU in the three directions of 
the n-frame, φ is the local latitude, h is the height, and RM and RN are the 
Meridian and Mao unitary radii, respectively. 

We construct the sensor error differential equation based on the 
characteristics of the sensor. The IMU bias errors are modeled as a first- 
order Gaussian Markov process because they changed slowly. The 
odometer scale error is modeled as a random walk process, as it would 
vary on changeable working conditions. The error differential equations 
of IMU bias errors and odometer scale error are defined as. 

δḃg = − δbg/Tg + ωg

δḃa = − δba/Ta + ωa
δk̇ = ωodo

(6) 

where Tg and Ta are the error correlation times of the gyroscope bias 
and accelerometer bias, respectively, ωg and ωa are the drive white noise 
of the bias error models, and ωodo is the drive white noise of the 
odometer scale error. 

In the Kalman filter, the discrete error state propagation can be 
expressed as. 

δxk = Φk,k− 1δxk− 1 +ωk− 1 (7) 

where δxk− 1 is the error state at tk− 1, Φk,k− 1 is the state transition 
matrix from tk− 1 to tk, and ωk− 1 is the system noise during state propa-
gation with the covariance of Qk− 1. 

The discrete measurement equation of the Kalman filter is. 

zk = Hkδxk + vk (8) 

where zk is the measurement innovation obtained by subtracting the 
measurement state from the estimated state, vk is the measurement 
noise, and Hk is the measurement matrix. Subsequently, we will derive 
the ODO/NHC velocity and distance increment measurement equations. 

2.2. Velocity measurement model 

It is necessary to project the INS velocity under the n-frame to the v- 
frame to calculate ODO/NHC measurement innovation. The IMU 
installation angles and odometer lever arm are required for the velocity 
projection. We treat the installation angles and lever arm as constant 
values to reduce the influence of uncertainty factors on navigation ac-
curacy. The installation angles were estimated using the method pro-
posed in [21]. Based on the required lever-arm accuracy investigated in 
[22], the lever arm was measured by a tape, which is sufficiently ac-
curate. We multiply the odometer scale with the estimated vehicle ve-
locity to establish the measurement equation intuitively. The estimated 
vehicle velocity is. 

v̂v
= K̂ Ĉ

v
b

(
Ĉ

b
n v̂n

+
(

ω̂b
ib − Ĉ

b
n ω̂n

in

)
× lb ) (9) 

where K = diag[ 1 + k 1 1 ] is the scale factor matrix of the ve-
locity in the v-frame. The second and third diagonal elements of K are set 
to 1 because there are no scale errors in the lateral and vertical speeds of 
the carrier. 

The ODO/NHC measurement velocity in the v-frame is. 

ṽv
=

[
ṽodo 0 0

]T
= vv − ev (10) 

where ̃vodo is the speed measurement of the odometer, vv is the truth 
vehicle velocity in the v-frame and ev is the ODO/NHC velocity mea-
surement error. 

The velocity measurement innovation is calculated as: 

δvv = v̂v
− ṽv (11) 

Performing error perturbation on v̂v and ignoring the small second- 
order error, we obtain the below velocity measurement equation as. 

zv = Hvδx + ev

= − e1Cv
b

(
Cb

nvn +
(
ωb

nb ×
)
lb )δk − KCv

b

[(
Cb

nvn)×
]
θ − KCv

bCb
nδvn

− KCv
b

(
lb ×

)
δbg − KCv

b

(
lb ×

)[(
Cb

nωn
in

)
×

]
θ − KCv

b

(
lb ×

)
Cb

nδωn
in + ev

(12) 

where e1 = diag[1 0 0 ], ωb
nb = ωb

ib − Cb
nωn

in, Hv is the velocity 
measurement matrix. δωn

in = δωn
ie +δωn

en is generally negligible for low- 
speed carriers. Thus, we get the expression of Hv as. 

Hv =
[
03×3, − KCv

bCb
n, − KCv

b

[(
Cb

nvn)×
]
− KCv

b

(
lb ×

)[(
Cb

nωn
in

)
×

]
,

− KCv
b

(
lb ×

)
, 03×3, − e1Cv

b

(
Cb

nvn +
(
ωb

nb ×
)
lb ) ]

(13) 

We can then update the state vector using the ODO/NHC velocity 
measurements. 
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2.3. Distance increment measurement model 

The distance increment measurements are the accumulated distances 
in the three directions of the vehicle frame during a given period. Instead 
of projecting ODO/NHC measurement to n-frame or e-frame, we 
construct the distance increment model in the vehicle’s three directions, 
which split ODO/NHC measurement error and attitude error. Different 
from the pulse increment model in [17], we extend NHC from speed 
constraint to distance increment constraint, which reduces the random 
speed noise in the vehicle’s lateral and vertical directioins. 

The ODO/NHC distance increment measurement model in this study 
is derived based on the summed measurement method [13,23]. We 
consider the velocity between two consecutive epochs to vary linearly 
since the IMU data rate is usually high enough. Then, the estimated 
distance increments in the three directions of the v-frame from tk− 1 to tk 
can be derived as: 

Δŝv
k =

∫ tk

tk− 1

v̂v
(t)dt ≈ v̂v

k− 1/2Δtk (14) 

where, Δtk = tk − tk− 1 and v̂v
k− 1/2 =

(
v̂v

k− 1 + v̂v
k
)/

2. 
Assuming that there are N epochs during the update period, the 

estimated distance increments from tk− N+1 to tk are. 

Δŝv
=

∫ tk

tk− N+1

v̂vdt =
∑k

i=k− N+1
Δŝv

i ≈
∑k

i=k− N+1

1
2
(

v̂v
i− 1 + v̂v

i

)
Δti (15) 

The ODO/NHC distance increment measurement in three directions 
is given by. 

Δs̃v
=

[
Δs̃odo 0 0

]T
= Δsv − es (16) 

where Δs̃odo is the distance increment measurement of the odometer, 
Δsv is the truth distance increments in the three directions of the vehicle 
and es is the ODO/NHC distance increment measurement error. 

The measurement innovation of the ODO/NHC distance increment 
can be calculated as. 

δΔsv = Δŝv
− Δs̃v

=
∑k

i=k− N+1
δΔsv

i + es (17) 

where δΔsv
i is the estimated distance increment error from ti− 1 to ti. 

We derive δΔsv
i from the estimated vehicle velocity as. 

δΔsv
i =

1
2
(

v̂v
i− 1 − vv

i− 1 + v̂v
i − vv

i

)
Δti (18) 

Similar to the velocity measurement equation, we ignore the small 
second-order error and obtain the distance increment measurement 
equation from (17), as shown below: 

zs =
1
2

∑k

i=k− N+1

(
Hv,iΔtiδxi + Hv,i− 1Δtiδxi− 1

)
+ es

=
1
2
Hv,k− NΔtk− N+1δxk− N +

∑k

i=k− N+1

(
Hv,iΔtiδxi

)
−

1
2
Hv,kΔtkδxk + es

(19) 

To separate the distance increment measurement and the states at 
the previous epochs, we build the transformation between ti and tk 

by the state transition matrix. Transforming (7), we yield 
δxk− 1 = Φ− 1

k,k− 1(δxk − ωk− 1). To simplify the measurement model, we 
ignore the system noise during state transition. Then, the error state δxi 

can be expressed with the current error state δxk as. 

δxi = Φ− 1
k,i δxk

Φk,i = Φk,k− 1⋯Φi+1,i
(20) 

Substituting (20) into (19), we obtain the distance increment mea-
surement equation as. 

zs=
1
2
Hv,k− N Δtk− N+1Φ− 1

k,k− Nδxk+
∑k

i=k− N+1
Hv,iΔtiΦ− 1

k,i δxk −
1
2
Hv,kΔtkδxk+es

(21) 

which is only a function of the current state. We mark the distance 
increment measurement matrix as Hs, which is. 

Hs =
1
2
Hv,k− NΔtk− N+1Φ− 1

k,k− N +
∑k

i=k− N+1
Hv,iΦ− 1

k,i Δti −
1
2
Hv,kΔtk (22) 

Then, we can perform the state update process based on the distance 
increment measurement matrix. 

2.4. Measurement quality analysis 

2.4.1. Accuracy analysis 
The wheel odometer is innately an encoder that counts the pulse 

number generated by the carrier movement [24]. Assuming that the 
counting pulse increment is ΔN during the sample period T, we can 
derive the odometer velocity as. 

ṽodo =
πD
P

(ΔN + δp)
T

(23) 

where D is the wheel diameter, P, which is called the resolution, is 
the pulse number during one wheel revolution, and δp is the error of the 
odometer pulses. In this study, the wheeled robot was equipped with an 
odometer with a wheel diameter of 0.15 m, a resolution of 800, a 
sampling rate of 200 Hz, and a pulse measurement error of 1. Using (23), 
we obtain the odometer measurement speed error as approximately 
0.118 m/s, a considerable quantization error. The assumption of con-
stant acceleration is commonly used during update intervals to reduce 
the quantization noise of the odometer in engineering applications [17]. 
We take the linear extrapolation method as the example in this study to 
analyze the measurement error. 

Linear extrapolation assumes that speed varies linearly over the 
update interval. This method is divided into two steps: i) calculating the 
mean speed of the first and second half intervals, and ii) extrapolating 
the current speed. If the half interval is 0.5 s, the average speed mea-
surement error reduces to 0.0012 m/s, which is significantly lower than 
the error measured from one sample epoch. Then, we adopt the error 
modeling method in [17] to quantitatively analyze the speed error and 
distance increment error of the odometer. In other words, the pulse 
measurement error is modeled as a uniform distribution between [0,1)
and the variance of var(δp) = 1/12. In addition, the pulse measurement 
errors at different times are independent of each other. 

The pulse counts of t = 0s, 0.5s, and 1s are denoted as ̃s0, ̃s0.5, and ̃s1, 
respectively. The extrapolation speed at t = 1s can be derived from the 
pulse counts in the last second as. 

ṽodo =
πD
P

(

3̃s1 − 4̃s0.5 + s̃0

)

(24) 

The extrapolation speed error is calculated as: 

ev =
πD
P

(3̃s1 − 4̃s0.5 + s̃0) −
πD
P

(3s1 − 4s0.5 + s0)

=
πD
P

(3δp1 − 4δp0.5 + δp0) (25)  

where, δp0, δp0.5, and δp1 are the pulse measurement error at t = 0s, 
0.5s, and 1s, respectively. Using the covariance of the pulse measure-
ment error, we obtain the standard deviation (STD) of the speed error as 
σ(ev) ≈ 1.47πD/P m/s. 

The distance increment measurement error is only related to the 
pulse error at t = 0s and 1s, and is calculated as. 

es =
πD
P

(

s̃1 − s̃0

)

−
πD
P

(s1 − s0) =
πD
P

(δp1 − δp0) (26) 
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The STD of distance increment measurement error is σ(es) ≈

0.41πD/P m. 
We convert the distance increment measurement error in one second 

to the average speed error, for which the STD is σ̇(es) = 0.41πD/P m/s. It 
can be derived that the odometer distance increment measurement error 
decreases by 72 % compared with the speed measurement error. 

The lateral and vertical speed errors are mainly caused by the carrier 
vibration, and we model them as random white noise. Thus, the mea-
surement error will decrease by 

̅̅̅̅̅̅̅̅̅
1/T

√
times theoretically when 

extended to distance increment. In this study, the theoretical error 
decrease of lateral and vertical distance increment is 93 %. 

2.4.2. Robustness analysis 
Although the linear extrapolation method in (24) effectively reduces 

the speed quantization error, this method inevitably introduces addi-
tional speed errors when the velocity linearity assumption is not satis-
fied. The speed linearity assumption is severely broken when the vehicle 
speed varies drastically, the speed linearity assumption is severely 
broken, and the extrapolation speed error increases significantly. In 
contrast, nonlinear speed changes do not significantly affect the accu-
racy of the distance increment. 

Compared to common land vehicles, such as commercial cars, 
wheeled robots usually have tiny wheels and poor shock absorption 
designs. Moving robots may suffer from serious vibrations, which add 
additional instantaneous speed at the location of the IMU. The odometer 
cannot measure the speed vibration because the wheels, which are in 
contact with the ground, are not affected by the vibration of the carrier. 
Therefore, the odometer speed measurement error increases, resulting in 
a poor speed auxiliary effect. In contrast, the moving distance of the 
entire robot is not significantly affected by the vibration. Therefore, the 
forward distance increment accuracy can be guaranteed under such vi-
brations. Similarly, the conventional speed constraints of the NHC 
degrade when the lateral and vertical speeds of the robot are vibrated by 
the carrier jitter and bump. However, the lateral and vertical distance 
increment constraints correspond more to the actual movement (i.e., the 
macro movement distance is zero). 

Based on the above analysis, the measurement at the distance 
increment level is not sensitive to drastic changes in carrier speed. It can 
also deal more robustly with the jitter and bump of the carrier. There-
fore, we expect the ODO/NHC distance increment measurements to 
exhibit more robust and accurate positioning performance. 

3. Field tests 

Field tests were conducted on a mobile wheeled robot to evaluate the 
performance of the two measurement models in real applications. This 
section describes the test detail and our data processing method. 

3.1. Test description 

We conducted field tests on the six-wheeled robot shown in Fig. 2(a), 
in which the middle two wheels were non-steering wheels when driving. 
The average of the encoder pulses from the two middle wheels is 
considered the equivalent odometer measurement at the center of the 
non-steering axes. The odometer and wheel parameters are described in 
Section 2.4.1. Four GNSS/INS integrated navigation modules (INS- 
Probe) were mounted to collect four measurements of ADIS16465 
(quasi-tactical-grade MEMS IMU). One INS-Probe synchronously 
collected odometer measurements and GNSS RTK positioning results. In 
addition, one INS-Probe was installed on the robot tower, and the 
remaining INS-Probes were distributed on the board. The IMUs and 
odometer data were sampled at 200 Hz, and the GNSS results were 
sampled at 1 Hz. The navigation-grade IMU Leador-A15 was used as the 
ground truth. Table 1 lists the main parameters of the two IMUs. 

Fig. 2 (b) illustrates the driving track of the robot under open-sky 

conditions. The open area ensured centimeter-level GNSS real-time ki-
nematic (RTK) positioning. The robot was firstly stationary for approx-
imately 400 s such that the reference truth system (Leador-A15) could 
perform a precise initial alignment. Subsequently, the robot moved 
along the trajectory shown in the figure, accompanied by acceleration, 
deceleration, and turning. We conducted seven tests in this scene 
(denoted as A–G groups) to ensure that the evaluation results were 
representative and statically sufficient. 

3.2. Accuracy comparison method 

3.2.1. ODO/NHC measurement accuracy 
In the field test, the velocity in the v-frame derived from the high- 

precision reference frame was considered the real velocity. Subse-
quently, the real distance increments of each second were calculated. 
Note that the real velocity and distance increment in the lateral and 
vertical directions were not zero because of the carrier’s vibration in the 
real test. Then, we calculated the ODO/NHC measurement error. 

We could not directly compare the ODO/NHC velocity measurement 
error and distance increment measurement error cause they have 
different physical meanings. Therefore, we converted the distance 
increment errors within 1 s to average speed errors, which were 
compared with the ODO/NHC velocity measurement errors. The root 
mean square (RMS) values of the measurement errors were calculated 
and employed as the accuracy criteria for the velocity and distance 
increment measurements. 

3.2.2. Positioning accuracy 
The reference trajectory was acquired by fusing the RTK positioning 

results and the IMU measurements of Leador-A15 in a Rauch-Tung- 
Striebel smoother. We adopted a GNSS outage test to evaluate the 
positioning accuracy of the two ODO/NHC measurement models [25]. 
GNSS outage occurred after the IMU bias errors fully converged. 
Considering the GNSS outage time in the robot work scene, we artifi-
cially interrupted the GNSS signal for 60 s every 180 s. We also post-
poned the outage start time by 60 s and 120 s to get more outage test 

Fig. 2. Field test robot and trajectory.  

Table 1 
Technique parameters of the Two IMUs.  

IMU ADIS16465 Leador A15 

Gyro bias stability [deg/h] 50 0.02 
Gyro white noise [deg/

̅̅̅
h

√
] 0.1 0.003 

Accel bias stability [mGal] 50 15 
Accel white noise [m/s/

̅̅̅
h

√
] 0.1 0.03  
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samples. For every outage test, we calculated the RMS values of the 
position drifts in the forward, lateral, and vertical directions during all 
periods of GNSS outage. Subsequently, the RMS values of the position 
error were considered as the positioning accuracy evaluation criteria of 
the two ODO/NHC measurement models. 

4. Results and discussion 

4.1. Measurement accuracy analysis 

We first evaluated the error in the ODO/NHC velocity and distance 
increment measurements. The odometer speed was obtained using the 
linear extrapolation method described in Section 2.4.1. Using the ac-
curacy comparison method described in Section 3, we calculated the 
seven tests’ ODO/NHC velocity and distance increment measurement 
accuracy. The ODO/NHC measurement error of Group B is shown in 
Fig. 3. Furthermore, we counted the RMS values of the seven tests’ 
measurement error, and the comparison between the two measurements 
is shown in Table 2. Note that we replace the distance increment model 
with Distance Model in all tables for simplicity. The error decrease in 
Table 2 denotes the speed error decrease of the distance increment 
measurement compared with the velocity measurement. 

It is evident from Fig. 3 and Table 2 that the distance increment 
measurement errors in the forward and vertical directions are signifi-
cantly smaller than the velocity measurement errors. The error de-
creases are 89 % and 86 %, respectively. In the forward direction (i.e., 
the odometer measurement), the error decrease was larger than the 
theoretical analysis of 72 %. This reflects the influence of the speed 
nonlinearity and carrier vibration on the odometer measurement speed. 
In the vertical direction, the error decrease is consistent with our theo-
retical analysis. 

However, in the lateral direction, the error decrease is quite different 
from the theoretical analysis and exhibits no significant improvement 
compared with that in the other two directions. The derived lateral 
speed and distance increment in GNSS/INS integration system are 
related to the lever arm and heading angle. Moreover, the lever arm 
error and heading angle error affect both the speed and distance incre-
ment measurements. Therefore, the distance increment measurement 
error in the lateral direction is not significantly improved than the ve-
locity measurement error. Although the error caused by the carrier 

vibration is not manifested, the lateral distance increment measurement 
error decreases by 25 %. 

4.2. Positioning accuracy analysis 

We employed the accuracy comparison method described in Section 
3.2 to calculate the positioning error of the two ODO/NHC measurement 
models. The theoretical ODO/NHC measurement noise is usually 
smaller than the actual measurement error due to the complex situation 
in a field test. Therefore, it is necessary to adjust the measurement noise 
parameters appropriately based on carrier motion characteristics. Aim-
ing at a minimum position error, we optimized the noise parameters of 
the two measurement models with the A, D, and G group data. The 
positioning errors of the two models in one outage test are shown in 
Fig. 4. Then, the optimized noise parameters were employed in the GNSS 
outage tests of the remaining four groups of data. Subsequently, we 
calculated the RMS position error and evaluated the positioning accu-
racy of the two ODO/NHC measurement models. Table 3 lists the po-
sition errors of the two measurement models. The error decrease in the 
following tables denotes the positioning error decrease of the distance 
increment measurement model compared with the velocity measure-
ment model. 

It is apparent from Table 3 that the position errors derived from the 
distance increment model are smaller than those of the velocity mea-
surement model in the three directions of the v-frame. Statistically, the 
positioning errors of the distance increment model decreased by 67 %, 
15 %, and 39 %, respectively. In the lateral direction, the error decrease 
is significantly smaller than in the other two directions, consistent with 
the measurement accuracy analysis. We reason that the large attitude 
error in field tests, which is caused by the unmodeled sensor error, the 
installation angle residual error, etc., results in a large positioning error 

Fig. 3. ODO/NHC measurement error of Group B.  

Table 2 
Error of the two ODO/NHC measurements.  

Measurement 
Error 

Velocity 
Model [m/s] 

Distance 
Model [m/s] 

Error 
Decrease [%] 

Forward  0.031  0.0035 89 
Lateral  0.018  0.014 25 
Vertical  0.0094  0.0013 86  

Fig. 4. Position Error of one outage test. The pink bands indicate 
GNSS outages. 
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in the lateral direction. And it also leads to a slight error decrease of the 
distance increment model in the field tests. Nonetheless, the error 
decrease in the lateral and vertical directions verified the accuracy 
advantage of extending NHC to a distance increment constraint. 

Then, we calculated the RMS values of the position error during all 
the 60 s GNSS outage periods. The position error drift curves of the two 
measurement models are shown in Fig. 5. In Fig. 5, the forward, lateral 
and vertical position errors derived from the velocity model are always 
higher than those derived from the distance increment model 
throughout the GNSS outage period. Moreover, the forward and vertical 
position errors of the velocity model diverge faster as the GNSS outage 
time increases. In the lateral direction, the positioning errors of the two 
ODO/NHC models increase at approximately the same rate when the 
GNSS outage time is longer than 25 s. This is because the accumulated 
INS errors, particularly the heading angle error, play an essential role in 
the lateral position error as the outage time increases. The two ODO/ 
NHC measurement models rely on the accuracy of the INS heading 
angle, which diverges during GNSS outages. Therefore, the difference 
between the two models is gradually covered by the increasing attitude 
error. Consequently, the error decrease of the distance increment model 
in the lateral direction becomes unobvious when GNSS outages 60 s. 

4.3. Robustness test and analysis 

This section describes three dedicated tests designed to evaluate the 
robustness of the velocity and distance increment models. The first test 
analyzed the influence of carrier vibration on the performance of the two 
models. Then, an emergency stop test was conducted to simulate the 
scenario where the speed linearity assumption was broken. Finally, the 
passing speed bump experiment was conducted to simulate the scene in 

which the IMU installation angles and lever arm change briefly. 

4.3.1. Carrier vibration test 
When the robot moves, the IMU installed on the tower vibrates more 

severely than the IMU installed on the board, particularly horizontally. 
Therefore, we compare the position errors of the IMUs installed on the 
tower and board to analyze the impact of carrier vibration on the two 
models. 

First, we used the IMU v-frame velocity STD during 1 s to describe 
the vibration and verify that the robot tower vibrates more severely. The 
RMS of the velocity STD was calculated to compare the carrier vibra-
tions at different positions. We only consider epochs where the forward 
speed STD is smaller than 0.5 m/s in this study to avoid the contribution 
of acceleration and deceleration to the forward speed STD. Table 4 lists 
the velocity STD of the IMUs installed on the tower (T17) and the board 
(H4). 

In Table 4, the velocity STD demonstrates that the IMU installed on 
the tower (T17) yields greater speed vibration in the forward and lateral 
directions than that on the board (H4), which is consistent with our 
analysis. Then, we counted the position errors of T17 and H4 in the 
GNSS outage tests as shown in Table 5. 

The position error decrease of the distance increment model in the 
T17 test is greater than that in the H4 test, especially in the forward and 
lateral directions. This phenomenon corresponds to the velocity STD of 
two IMUs installed at different positions. In addition, we find that the 
error decrease difference between the two IMUs is mainly on that the 
position error of the velocity measurement model in the T17 test is 
larger than that of H4. This proves the velocity measurement model 
yields additional positioning errors when the vehicle vibrates. We can 
conclude that the distance increment measurement model is less sensi-
tive to carrier vibrations and shows better robustness than the velocity 
model. 

4.3.2. Emergency stops test 
In the field tests, we designed two emergency stops in Group B to 

compare the robustness of the distance increment model. Emergency 
stops occurred at approximately 460,400 and 460760 s, respectively, 
and the speed curves are shown in Fig. 6. The GNSS outage test was 
performed in the emergency stop interval, and the position error aided 
by the two ODO/NHC measurement models was calculated. The hori-
zontal position error curves are shown in Fig. 7. 

As shown in Fig. 6, the speed changed too quickly to satisfy the 
linearity assumption when the robot stopped immediately. Conse-
quently, the odometer speed measurement error increased. Therefore, 
the forward position error of the velocity measurement model increased 
sharply, as shown in Fig. 7. In contrast, the sudden speed change had no 
effect on the distance increment measurement accuracy. The forward 
position error of the distance increment model did not increase 

Table 3 
Position Errors of the Four Groups Field Test.  

Test Group Velocity Model [m] Distance Model [m] Error Decrease [%] 

Forward Lateral Vertical Forward Lateral Vertical Forward Lateral Vertical 

B  0.257  0.270  0.074  0.107  0.220  0.046 58 18 38 
C  0.225  0.296  0.085  0.074  0.228  0.047 67 23 45 
E  0.252  0.267  0.083  0.080  0.266  0.050 68 0 39 
F  0.264  0.391  0.091  0.068  0.324  0.059 74 17 35 
RMS  0.250  0.310  0.083  0.084  0.262  0.051 67 15 39  

Fig. 5. Position error drift curves over outage time.  

Table 4 
Velocity STD of the IMUs Installed on the Tower (T17) and Board (H4).  

IMU Forward [m/s] Lateral [m/s] Vertical [m/s] 

T17  0.036  0.015  0.0081 
H4  0.031  0.0087  0.0082  
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abnormally at emergency stops. In the lateral direction, position errors 
of both the two models increased slightly at the emergency stops. This 
was caused by a brief change in the IMU installation angles and odom-
eter lever arm. In general, the distance increment model performs 
robustly in the case of emergency stops. 

4.3.3. Passing speed bumps test 
The passing speed bumps test was carried out in an open scene where 

the GNSS RTK positioning accuracy was at the centimeter level. The 
robot was driven back and forth to pass a manually placed speed bump 
with a height of approximately 8 cm, as shown in Fig. 8. In the test, the 
robot passed the speed bump six times. Fig. 9 shows the velocity of the 
robot. 

During the test, the robot moved roughly east–west. The robot’s 
speed in the forward direction (i.e., east direction) suddenly decreased 
when it passed the speed dump, as shown in Fig. 9. In addition, the speed 
bump caused a certain jolt to the robot, and the north and down speeds 
exhibited apparent fluctuations. The IMU installation angles and the 
odometer lever arm changed briefly but significantly when the two 
middle wheels passed the speed bump. 

We conducted GNSS outage tests to evaluate the positioning per-
formance of the two measurement models in the passing speed bumps 
test. The GNSS signal was interrupted for 10 s during the robot passing 

the speed bump. Subsequently, we calculated and compared the position 
errors using the two measurement models. The position errors of the two 
models in the passing speed bumps test are shown in Fig. 10. 

In Fig. 10, when the robot passed the speed bump, the position errors 
of the velocity and distance increment measurement models increased 
significantly because of the change in the installation angles and lever 
arm. The instantaneous velocity measurement error will increase 
sharply if a change in the installation angles and lever arm occurs at that 
instant. The distance increment model is relatively insensitive to tem-
porary changes in the installation angles and lever arm, considering it 
constrains the moving distance within a second. Consequently, the for-
ward position error of the velocity model in the third and fourth outages 
was significantly larger than that of the distance increment measure-
ment model. Although the velocity measurement model yielded a 
smaller forward position error in the last GNSS outage, the distance 
increment model exhibits a more accurate positioning result overall in 
the forward direction. In the lateral and vertical directions, the distance 
increment model’s position errors are also obviously minor than the 
velocity model, confirming the necessity of extending NHC to distance 
increment constraint. Then, we counted the RMS values of the position 
errors in the two outage tests, as listed in Table 6. 

According to Table 6, the position error reduction of the distance 
increment model compared with that of the velocity model is substan-
tial. Specifically, the distance increment model has a position error 
reduction of 59 %, 38 %, and 41 % in the three directions of the v-frame, 
respectively. The statistical results of the passing speed bump tests 

Table 5 
Position Errors of the IMUs Installed on the Tower (T17) and the Board (H4).  

Test Group Velocity Model [m] Distance Model [m] Error Decrease [%] 

Forward Lateral Vertical Forward Lateral Vertical Forward Lateral Vertical 

T17  0.294  0.324  0.084  0.082  0.240  0.054 72 26 36 
H4  0.232  0.279  0.076  0.080  0.244  0.050 65 13 35  

Fig. 6. Robot speed during of the emergency stops.  

Fig. 7. Horizontal position errors of the emergency stops. The pink bands 
indicate GNSS outages. 

Fig. 8. Passing speed bumps test scene.  

Fig. 9. Velocity in the passing speed bumps test. Time passing the speed bump 
occur in the pink bands. 
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confirm the robustness of the ODO/NHC distance increment model. 
Additionally, the superior error decrease in the lateral direction than in 
Table 3 verifies that extending NHC to a distance increment constraint 
exhibits more robust positioning in such a harsh case. 

Generally, the conducted navigation accuracy and robustness tests 
show that the ODO/NHC distance increment measurement model 
demonstrates better positioning accuracy and more robust performance 
than the velocity model in wheeled robot positioning. 

5. Conclusion 

In this study, the positioning accuracy and robustness of the ODO/ 
NHC velocity and distance increment measurement models dedicated 
for wheeled robot navigation were investigated in detail. Particularly, 
ODO/NHC distance increment measurement model was constructed in 
the three dimensions of the carrier frame, in which the NHC was also 
extended as a distance increment constraint. Then the measurement 
accuracy and the robustness of the two ODO/NHC measurement models 
were analyzed based on the motion characteristics of wheeled robots. 
Finally, adequate field tests were conducted to evaluate the positioning 
accuracy and robustness of these two ODO/NHC measurement models. 

The theoretical analysis for the wheeled robot motions indicated that 
the ODO/NHC distance increment measurement yielded higher accu-
racy than the velocity measurement and was insensitive to rapid speed 
changes and carrier vibrations. Field test results proved that both the 
ODO and NHC distance increment measurement exhibited smaller 
measurement error and superior positioning accuracy for wheeled ro-
bots. Compared with the velocity model, the forward, lateral, and ver-
tical positioning errors using the distance increment model decreased by 
67 %, 15 %, and 39 %, respectively. Additionally, the distance increment 

model outperformed the velocity model in terms of robustness in harsh 
cases, such as vibration, emergency stops, and passing speed bumps. 

As wheeled robots can usually provide multi-odometer measure-
ments of all wheels, including the steered wheels. Therefore, the use of 
distance increment measurement of all steered wheels and non-steering 
wheels for wheeled robot positioning will be the future research work. 
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