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Abstract—Visual navigation systems are susceptible to complex 

environments, while inertial navigation systems (INS) are not 
affected by external factors. Hence, we present IC-GVINS, a 
robust, real-time, INS-centric global navigation satellite system 
(GNSS)-visual-inertial navigation system to fully utilize the INS 
advantages. The Earth rotation has been compensated in the INS 
to improve the accuracy of high-grade inertial measurement units 
(IMUs). To promote the system robustness in high-dynamic 
conditions, the precise INS information is employed to assist the 
feature tracking and landmark triangulation. With a GNSS-aided 
initialization, the IMU, visual, and GNSS measurements are 
tightly fused in a unified world frame within the factor graph 
optimization framework. Dedicated experiments were conducted 
in the public vehicle and private robot datasets to evaluate the 
proposed method. The results demonstrate that IC-GVINS 
exhibits superior robustness and accuracy in complex 
environments. The proposed method with the INS-centric 
architecture yields improved robustness and accuracy compared 
to the state-of-the-art methods. We open-source the proposed 
IC-GVINS and the multi-sensor datasets on GitHub 
(https://github.com/i2Nav-WHU/IC-GVINS). 
 

Index Terms—Multi-sensor fusion navigation, visual-inertial 
navigation system, factor graph optimization, state estimation. 

I. INTRODUCTION 
ontinuous, robust, and accurate positioning is essential for 
autonomous vehicles and robots in complex environments 

[1]. Visual-inertial navigation system (VINS) has become a 
practical solution for autonomous navigation due to its higher 
accuracy and lower cost [2]. It has been historically difficult to 
achieve a robust and reliable positioning for VINS in complex 
environments because the visual system is susceptible to 
illumination change and moving objects [3]. In contrast, the 
inertial measurement unit (IMU) is not affected by these 
external environment factors, and the inertial navigation system 
(INS) can achieve continuous high-frequency positioning 
independently [4]. The low-cost micro-electro-mechanical 
system (MEMS) INS cannot provide long-term (e.g. longer 
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than 1 minute) high-accuracy positioning. Nevertheless, it can 
achieve decimeter-level positioning within several seconds [5]. 
However, most current VINSs are visual-centric or 
visual-driven, while the INS precision has not been well 
considered, such as in [6], [7]. Furthermore, the INS 
information contributes a little to the visual processes in these 
systems, which might degrade system robustness and accuracy 
in visual-degenerated environments. Hence, we propose an 
INS-centric VINS (IC-VINS) to utilize the INS advantages 
fully. We further incorporate the global navigation satellite 
system (GNSS) into the proposed IC-VINS to construct an 
INS-centric GNSS-visual-inertial navigation system 
(IC-GVINS) to perform continuous, robust, and accurate 
positioning in large-scale challenging environments. 

Conventionally, the state estimation problem in VINS is 
addressed through filtering [8]–[11]. However, we have noticed 
some insufficient usage of the INS in recent filtering-based 
approaches. For example, OpenVINS [9] is a visual-driven 
system because the system will pause if no image is received. 
The independent INS should be adopted for real-time 
navigation without hesitation. Besides, the INS does not 
contribute to the feature tracking in [9]. Similarly, the direct 
image intensity patches were employed as landmark descriptors 
allowing for tracking non-corner features in an IEKF-based 
visual-inertial odometry (VIO) [10]. R-VIO [11] is a 
robocentric visual-inertial odometry within the multi-state 
constraint Kalman filters (MSCKF) framework. Though the 
filtering-based VINSs have exhibited considerable accuracy, 
they theoretically suffer from significant linearization errors, 
which may ruin the estimator and further degrade the 
robustness and accuracy [12]. 

By solving maximum a posterior (MAP) estimation, factor 
graph optimization (FGO) has been proven to be more efficient 
and accurate than the filtering-based approaches for VINS [2], 
[12]. Nevertheless, the INS information has not been fully used 
in most FGO-based VINSs. Besides, the IMU measurements 
have only been employed to construct a relative constraint 
factor, such as the IMU preintegration factor [5]–[7], [13], [14]. 
VINS-Mono [6] adopts a sliding-window optimizer to achieve 
pose estimation, but their estimator relies more on 
high-frequency visual observations. Besides, their visual 
processes [6] are relatively rough, which limits their accuracy 
in large-scale complex environments. In ORB_SLAM3 [7], the 
camera pose predicted by the INS is used to assist the ORB 
feature tracking instead of using the unreliable ad-hoc motion 
mode. ORB_SLAM3 is still driven by visual images, thus 
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unsuitable for real-time navigation. Similarly, Kimera-VIO [13] 
is a keyframe-based visual-inertial estimator that can perform 
both full and fixed-lag smoothing using GTAM [15]. A novel 
approach is proposed in [14], which combines the strengths of 
the accurate VIO with the globally consistent keyframe-based 
bundle adjustment (BA). Their works [14] are built upon the 
reality that the INS accuracy might quickly degrade after 
several seconds of integration. However, as mentioned above, 
the INS can maintain decimeter-level positioning within 
several seconds [5], even for MEMS IMU. 

The high-accuracy industrial-grade MEMS IMU has been 
widely used for autonomous navigation because the cost has 
been lower with improved accuracy [4]. However, the INS 
information has not been well considered, and the INS 
mechanization algorithm has been relatively rough in these 
optimization-based VINSs. Besides, most of these VINSs are 
driven by visual images and unsuitable for real-time 
applications that need stable and continuous positioning. 
Moreover, the visual system is delicate and can be easily 
affected by environments, especially in complex scenes. Hence, 
the independent INS can play a more critical role in both the 
state estimation and visual processes of VINS to improve the 
robustness and accuracy. 

The GNSS can achieve absolute positioning in large-scale 
environments, and thus it has been widely used for outdoor 
navigation. By using the real-time kinematic (RTK) [4], the 
GNSS can perform centimeter-level positioning in open-sky 
environments. In VINS-Fusion [16], the GNSS is integrated 
into a global estimator, while the local estimator is a VINS. The 
GNSS can help estimate the IMU biases, but the GNSS is 
separated from the VINS estimator in [16]. The GNSS raw 
measurements are tightly incorporated into a VINS in GVINS 
[17], which can provide global estimation under 
indoor-outdoor environments. The approach in [17] is based on 
[6], but the visual processes have not been improved. Hence, 
GVINS [17] might also degrade robustness and accuracy in 
GNSS-denied environments. The GNSS can also help to 
initialize the VINS. In [18], the GNSS/INS integration and 
VINS are launched simultaneously to initialize a 
GNSS-visual-inertial navigation system for a land vehicle, but 
the approach is loosely coupled. G-VIDO [19] is a similar 
system, but they further incorporate the vehicle dynamic to 
improve the system accuracy. In [20], a tightly coupled 
optimization-based GNSS-Visual-Inertial odometry is 
proposed, but the GNSS does not contribute to the initialization 
of the visual system. Moreover, the GNSS works in a different 
world frame from the VINS system in all these systems 
[16]–[20], and the VINS has to be initialized separately. The 
GNSS can help initialize the INS first and further initialize the 
VINS. Hence, the GNSS and VINS can work in a unified world 
frame without extra transformation. 

The visual system may be affected by various degenerated 
scenes in complex environments. The INS can independently 
provide precise and high-frequency poses in the short term and 
may not be affected by external environmental factors. Inspired 
by these advantages of the INS, we propose an INS-centric 
GNSS-visual-inertial navigation system to utilize the precise 

INS information fully. The GNSS is adopted to achieve an 
accurate initialization and perform absolute positioning in 
large-scale environments. The main contributions of our work 
are as follows: 

● We propose a tightly-coupled INS-centric 
GNSS-visual-inertial navigation system (IC-GVINS) within 
the FGO framework to fully utilize the precise INS information. 
The INS-centric designs include the precise INS with the Earth 
rotation compensated, the GNSS-aided initialization, and the 
INS-aided visual processes. 

● IC-VINS, the VINS subsystem of IC-GVINS, is a 
keyframe-based estimator with strict outlier-culling algorithms. 
The precise INS information is employed to assist the feature 
tracking and landmark triangulation and improve the 
robustness in high-dynamic conditions. 

● The proposed method is evaluated in both the public 
vehicle and private robot datasets. Dedicated experiment results 
indicate that the proposed method yields improved robustness 
and accuracy compared to the SOTA methods in complex 
environments. 

● We open-source the proposed IC-GVINS and the 
well-synchronized multi-sensor robot datasets on GitHub. 

II. SYSTEM OVERVIEW 
The proposed IC-GVINS is driven by a precise INS 

mechanization, as depicted in Fig. 1. A GNSS/INS integration 
is conducted first to initialize the INS to obtain the rough IMU 
biases and absolute attitude estimation. The absolute attitude is 
aligned to the local navigation frame (gravity aligned) [4], [5], 
and thus the GNSS can be directly incorporated into the FGO 
without extra transformation. Once the INS is initialized, the 
prior pose from the INS is employed to assist the feature 
tracking and the landmark triangulation. Finally, the IMU, 
visual, and GNSS measurements are tightly fused within the 
FGO framework to achieve MAP estimation. The estimated 
states are fed back to the INS mechanization module to update 
the newest INS states for real-time navigation. 

III. METHODOLOGY 
In this section, the methodology of the proposed IC-GVINS 

is presented. The system core is a precise INS mechanization 
with the Earth rotation compensated. A GNSS/INS integration 
is conducted first to initialize the INS. The visual processes are 
assisted by the prior pose from the INS. Finally, all the 
measurements are tightly fused within the FGO framework. 

 
Fig. 1. System pipeline of the proposed IC-GVINS. The filled blocks denote 
the proposed works in this letter. 
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A. INS Mechanization 
The Earth rotation compensation is not a negligible factor for 

industrial-grade or higher-grade MEMS IMUs. To fully utilize 
the INS precision, we follow our previous work in [5] to adopt 
the precise INS mechanization algorithm, compensating for the 
Earth rotation and the Coriolis acceleration [4]. The INS 
kinematic model is defined as follows: 
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where w
wbp  and w

wbv  are the position and velocity of the IMU 
frame (b-frame) in the world frame (w-frame), respectively; the 
quaternion w

bq  and the rotation matrix w
bR  denote the rotation 

of the b-frame with respect to the w-frame; the w-frame is 
defined at the initial position of the navigation frame (n-frame) 
or the local geodetic north-east-down (NED) frame; the IMU 
frame is defined as the body frame (b-frame); wg  and w

iew  are 
the gravity vector and the Earth rotation rate in the w-frame; 

b
ibw  is the compensated angular velocity from the gyroscope; 

  denotes the quaternion product. The precise INS 
mechanization can be formulated by adopting the kinematic 
model in (1) [5]. The INS pose is directly used for real-time 
navigation and provides aid for the visual processes, as 
depicted in Fig. 1. 

B. GNSS-Aided Initialization 
The initialization is an essential procedure for VINS, which 

determines the system robustness and accuracy [6], [7]. As an 
INS-centric system, the most critical task is to initialize the INS. 
An FGO-based GNSS/INS integration is adopted to initialize 
the INS, and the FGO framework is described in section III.C. 
A rough estimation of roll, pitch, and gyroscope biases can be 
obtained during stationary states by detecting zero-velocity 
conditions [21]. Dynamic conditions are needed to obtain the 
absolute attitude from the GNSS. Travelling along a straight 
line for land vehicles [21] or rarely moving sideways for 
unmanned aerial vehicles (UAVs) [22] is assumed during the 
initialization. The absolute attitude is essential for IC-GVINS 
as we can incorporate the GNSS directly without other 
coordinate transformations. Besides, the precise IMU 
preintegration needs the absolute attitude to compensate for the 
Earth rotation [5]. The GNSS is necessary to initialize the INS 
in the current implementation for IC-GVINS. Nevertheless, for 
non-GNSS applications, a stationary condition or a wheeled 
odometer can help to initialize the INS. 

The initialized INS can provide prior pose for the visual 
processes; thus, the visual system is directly initialized with the 
INS aiding. Once the landmarks have been triangulated, the 
visual reprojection factors can be constructed using visual 
observations. A joint optimization is conducted to refine the 
state estimation further and improve the INS precision. 
According to our experiments, only 5 seconds of GNSS 
positioning (in dynamic conditions) is needed to perform an 

accurate initialization for the proposed method. In comparison, 
the GNSS-visual-inertial initialization time is 9 seconds in [18] 
and 4~9 seconds in [17]. Once the initialization is finished, the 
VINS subsystem IC-VINS can work independently without the 
GNSS. 

C. INS-Aided Visual Processes 
The VINS subsystem IC-VINS is a keyframe-based 

visual-inertial navigation system. The prior pose from the INS 
is utilized in the whole visual processes, including the feature 
tracking and the landmark triangulation. Strict outlier-culling 
algorithms are conducted to improve the robustness and 
accuracy further. 
1) Feature Detection and Tracking 

The Shi-Tomasi corner features are detected in our visual 
front end. The image is first divided into several grids with a set 
size, e.g. 200 pixels. The visual features are detected separately 
in each grid, and a minimum separation of two neighboring 
pixels is also set to maintain a uniform distribution of the 
features. Multi-thread technology is employed to improve 
detection efficiency. 

The Lukas-Kanade optical flow algorithm is adopted to track 
the features. It is challenging for the optical flow algorithm with 
a limited pyramid level in high-dynamic scenes. Hence, we 
propose an INS-aided feature tracking algorithm to improve the 
system robustness. For those features without the initial depth, 
we predict the initial optical flow estimations by compensating 
the rotation, and the RANSAC is employed to reject outliers. 
For those features with depth, the initial optical flow 
estimations are calculated by projecting the depth into the 
image plane. We also track the features in the backward 
direction (from the current to the previous frame) and remove 
the failed matches. The continuity of the feature tracking can be 
significantly improved with the INS aiding, especially in 
high-dynamic conditions. Nevertheless, the prior pose only 
provides the initial estimations, and the optical flow algorithm 
determines the final estimations. The tracked features will be 
undistorted for further processes. 

Once the features are tracked, the keyframe selection is 
conducted. We first calculate the average parallax between the 
current frame and the last keyframe. The prior pose from the 
INS is adopted to compensate for the rotation rather than the 
raw gyroscope measurements in [6]. If the average parallax is 
larger than a fixed threshold, e.g. 20 pixels, then the current 
frame is selected as a new keyframe. The selected keyframe 
will be used to triangulate landmarks and further construct the 
reprojection factors in the FGO. However, if the vehicle is in a 
stationary state or the average parallax is smaller than the 
threshold for a long time, no new optimization will be 
conducted in the FGO, which might degrade the accuracy. 
Hence, if no new keyframe is selected after a long time, e.g. 0.5 
seconds, a new observation frame will be inserted into the 
keyframe queue. The observation frame will be used only one 
time and will be removed after the optimization. 
2) Triangulation 

With the prior pose from the INS, the triangulation has 
become a part of the visual front end. When a new keyframe is 
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selected, the triangulation will be conducted using the current 
and previous keyframes. The triangulation determines the 
initial depth of the landmarks, which will be further estimated 
in the FGO. Hence, a strict outlier-culling algorithm is 
conducted in the triangulation to prevent the outlier landmarks 
or poorly initialized landmarks from ruining the FGO estimator. 
Parallax is first calculated between the feature in the current 
keyframe and the corresponding feature in the first observed 
keyframe. If the parallax is too small, e.g. 10 pixels, the visual 
feature will be tracked until the parallax is enough, which can 
improve the precision of the triangulated depths. Then, the prior 
pose from the INS is used to triangulate the landmarks, and the 
depth of the landmark in its first observed keyframe can be 
obtained. We further check the depths to ensure the correctness 
of the triangulation. Only those depths within a range, e.g. 
1~100 meters, will be added to the landmark queue or treated as 
outliers. 

D. Factor Graph Optimization 
A sliding-window optimizer is adopted to fuse all the 

measurements within the FGO framework tightly. When a new 
keyframe is selected or a new GNSS-RTK measurement is 
valid, a new time node will be inserted into the sliding window, 
and the FGO will be carried out to perform MAP estimation. 
The IMU preintegration factor is constructed between each 
consecutive time node. The FGO framework of the proposed 
IC-GVINS is depicted in Fig. 2. 
1) Formulation 

The state vector X  in the sliding window of IC-GVINS can 
be defined as 

  
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where kx  is the IMU state at each time node, as shown in Fig. 2; 
the IMU state includes the position, attitude quaternion, and 
velocity in the w-frame, and the gyroscope biases gb  and 

accelerometer biases ab ; n  is the number of time nodes in the 
sliding window; b

cx  is the extrinsic parameters between the 
camera frame (c-frame) and the IMU b-frame;   is the inverse 
depth parameter of the landmark in its first observed keyframe.  

The MAP estimation in IC-GVINS can be formulated by 
minimizing the sum of the prior and the Mahalanobis norm of 
all measurements as 
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where Prer  are the residuals of the IMU preintegration 
measurements; Vr  are the residuals of the visual measurements; 

GNSSr  are the residuals of the GNSS-RTK measurements;   is 

the covariance for each measurement;  ,p pr H  represents the 

prior from marginalization [6]; m  is the number of the 

GNSS-RTK measurements in the sliding window; L is the 
landmark map in the sliding window, and l  is the landmark in 
the map; i  denotes the reference keyframe of the landmark l , 
and j  is another keyframe. The Ceres solver [23] is adopted to 
solve this FGO problem. 
2) IMU Preintegration Factor 

The Earth rotation compensation has been proven to improve 
the accuracy of the industrial-grade MEMS-IMU preintegration, 
and thus we follow our refined IMU preintegration [5] in this 
letter. The residual of the IMU preintegration measurement can 
be written as 
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where w
/ , 1,g cor k kp  and w

/ , 1,g cor k kv  are the Coriolis correction 
term for position and velocity preintegration, respectively; 

1,ˆPrek kp , 1,ˆPrek kv , and 1,ˆPrek kq  are the position, velocity and 
attitude preintegration measurements, respectively; quaternion 

 
 

i 1

w
w k kt
q  is the rotation caused by the Earth rotation [5]. 

3) Visual Reprojection Factor 
We follow [6], [17] to construct the visual reprojection factor 

in the unit camera frame. The observed feature in the pixel 
plane can be expressed as pp . For a landmark l  with its 

inverse depth l  in the first observed keyframe i , and another 
observed keyframe j , we can write the visual reprojection 
residual as 
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Fig. 2. FGO framework of the IC-GVINS. The visual landmarks are 
represented by a single block for better visualization. 
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where 1
c
  is the back camera projection function, which 

transforms a feature in the pixel plane pp  into the unit camera 

frame using the camera intrinsic parameters; 1b and 2b  are two 
orthogonal bases that span the tangent plane of cˆ j

p . 

4) GNSS-RTK Factor 
The GNSS-RTK positioning in geodetic coordinates can be 

converted to the local w-frame as w
ĜNSSp  [4]. By considering the 

GNSS lever-arms b
GNSSl  in the b-frame, the residual of the 

GNSS-RTK measurement can be written as 
   w w b w

wb b ,ˆ, .
h h

GNSS
GNSS h GNSS GNSS h  r Rz X p l p  (6) 

The GNSS RTK is directly incorporated into the FGO without 
extra coordinate transformation or yaw alignment as in 
[16]–[20], which benefits from the INS-centric architecture. 
5) Outlier Culling 

A two-step optimization is employed in the IC-GVINS. After 
the first optimization, the chi-square test is adopted to remove 
all unsatisfied visual reprojection factors from the optimizer 
rather than the landmark map. The second optimization is then 
carried out to achieve a better state estimation. Once these two 
optimizations are finished, the outlier-culling process is 
implemented. The position of the landmarks in the w-frame is 
first calculated. Each landmark depth and reprojection error are 
then evaluated in its observed keyframes. The unsatisfied 
feature observations, e.g. the depths are not within 1~100 
meters or the reprojection errors exceed 4.5 pixels, will be 
marked as outliers and will not be used in the following 
optimization. Furthermore, the average reprojection error of 
each landmark is calculated, and the landmark will be removed 
from the landmark map if the error is larger than the threshold, 
e.g. 1.5 pixels. We both remove landmark outliers and feature 
observation outliers, which significantly improve the 
robustness and accuracy. We also employ the chi-square test to 
judge GNSS outliers after the first optimization. However, we 
do not remove the GNSS outliers but reweight them to mitigate 
their effects. This method can avoid removing the valid GNSS 
observations and thus improve the system robustness. 

IV. EXPERIMENTS AND RESULTS 

A. Implementation and Evaluation Setup 
The proposed IC-GVINS is implemented under the Robot 

Operating System (ROS) framework. The employed sensors 
include a monocular camera, a MEMS IMU, and a GNSS-RTK 
receiver. IC-VINS, the VINS subsystem of IC-GVINS, was 
adopted to evaluate the system robustness and accuracy during 
the GNSS outages. IC-VINS uses 5 seconds of GNSS for the 
system initialization. After initialization, IC-VINS uses only 
the monocular camera and the MEMS IMU. The noise 
parameter for the visual feature was set to 1.5 pixels without 
tuning, similar to VINS-Mono [6]. The noise parameters for the 
employed MEMS IMUs were tuned in the optimization-based 
GNSS/INS integration by batch processes [5]. 

We performed comparisons with the SOTA visual-inertial 
navigation systems VINS-Mono (without relocalization) [6] 

and OpenVINS [9] and the loosely-coupled GNSS/VINS 
integration VINS-Fusion (without relocalization) [16]. Here, 
VINS-Mono is employed because it is also a sliding-window 
VINS, similar to IC-VINS. Compared to VINS-Mono, our 
work has improved the front end in the feature detection, the 
feature tracking and the triangulation, and the back end with the 
improved IMU preintegration and the outlier-culling algorithm, 
as depicted in Fig. 1. The temporal and spatial parameters 
between the camera and IMU are all estimated and calibrated 
online. Evo [24] is adopted to quantitatively calculate the 
absolute rotation error (ARE) and absolute translation error 
(ATE). All the results in the following parts are running in 
real-time on a desktop PC (AMD R7-3700X). An onboard 
ARM computer (NVIDIA Xavier) was adopted to evaluate the 
real-time performance of IC-GVINS. 

B. Public Dataset 
 We evaluated the proposed method in the KAIST Complex 

Urban Dataset [25]. This dataset was collected by a vehicle in 
complex urban environments, with a maximum speed of around 
15 m/s. The employed sensors include the left camera (with a 
resolution of 1280x560), the industrial-grade MEMS IMU 
MTi-300 (with the gyroscope bias instability of 10 °/hr), and 
the VRS-RTK GPS. The sequences urban38 and urban39 were 
adopted for the evaluation. The trajectory lengths are 11191 
meters (2154 seconds) and 10678 meters (1856 seconds), 

 
Fig. 3. The trajectories in the KAIST urban38 dataset. VINS-Mono almost fails 
in this dataset, and it also occurs a large deviation for VINS-Fusion. The cyan 
rectangle denotes the GNSS-degenerated scenes in Fig. 5. 

 
Fig. 4. The trajectories in the KAIST urban39 dataset. The cyan rectangle 
denotes the GNSS-degenerated scenes in Fig. 5. 
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respectively. As the vehicle travels very fast, we used a max of 
200 features for all the systems to improve the robustness. We 
failed to run OpenVINS in this dataset, and thus it is not 
included in this part.  

The urban38 and urban39 are the two most difficult 
sequences in the KAIST dataset because of the high-speed 
motion and the large number of moving objects (mainly 
vehicles and pedestrians). Nevertheless, the proposed method 
exhibits superior accuracy in this dataset, as depicted in Fig. 3 
and Fig. 4. IC-VINS has very few drifts in both two sequences, 
while VINS-Mono has large drifts, especially in the urban38. 
These complex scenes may result in the degeneration of the 
visual system but may not affect the INS. Hence, IC-VINS with 
the INS-centric architecture can survive and run well in these 
scenes. In contrast, VINS-Mono, relying much on the visual 
system, demonstrates unsatisfied robustness and accuracy and 
almost fails in the urban38. With the help of the GNSS, 
IC-GVINS is well aligned to the ground truth, though there are 
many GNSS-degenerated scenes, as depicted in Fig. 5. This 
benefits from the tightly-coupled structure of IC-GVINS, and 
thus the GNSS outlier can be judged and reweighted. As can be 
seen in Fig. 3 and Fig. 4, VINS-Fusion exhibits inferior 
accuracy in these GNSS-degenerated scenes because no 
outlier-culling method is adopted. 

We calculated the absolute pose error in the urban38 and 
urban39, as shown in Table I. IC-GVINS yields the best 
accuracy in this dataset, and the accuracy is significantly 
improved compared to IC-VINS. VINS-Fusion exhibits the 
worst rotation accuracy, mainly because of the effect of the 
GNSS outliers. IC-VINS also yields superior accuracy than 
VINS-Mono and even VINS-Fusion in the urban38. The results 
demonstrate that the proposed method with the INS-centric 

architecture is practical in these complex urban environments. 
Specifically, by fully using the INS information, the proposed 
method can mitigate the impact of the visual-challenging 
scenes and exhibit satisfied robustness and accuracy.  

C. Private Dataset 
The private dataset, building, was collected by a wheeled 

robot in complex campus scenes where there were many trees 
and buildings. Many fast-moving objects around the road also 
make this dataset highly challenging. The sensors include a 
monocular camera (Allied Vision Mako-G131 with a resolution 
of 1280x1024), an industrial-grade MEMS IMU (ADI 
ADIS16465 with the gyroscope bias instability of 2 °/hr), and a 
GNSS-RTK receiver (NovAtel OEM-718D). All the sensors 
have been synchronized through hardware trigger to the GNSS 
time. The intrinsic and extrinsic parameters of the camera have 
been calibrated using the Kalibr [26]. The employed 
ground-truth system is a high-accuracy Position and 
Orientation System (POS), using the GNSS RTK and a 
navigation-grade IMU. The ground truth (0.02 m for position 
and 0.01 deg for attitude) was generated by a post-processing 
GNSS/INS integration software. The average speed of the 
wheeled robot is about 1.5 m/s. The trajectory length of the 

TABLE II 
ABSOLUTE POSE ERROR IN THE ROBOT DATASET 

ARE / ATE 
(deg / m) VINS-Mono VINS-Fusion OpenVINS IC-VINS IC-GVINS 

building 0.67 / 5.46 8.30 / 5.53 2.98 / 6.01 0.41 / 1.83 0.40 / 0.86 
 

TABLE I 
ABSOLUTE POSE ERROR IN THE KAIST DATASET 

ARE / ATE (deg / m) urban38 urban39 

VINS-Mono 4.28 / 125.88 4.91 / 94.47 

VINS-Fusion 8.64 / 32.05 6.33 / 10.01 

IC-VINS 1.44 / 10.83 1.77 / 13.07 

IC-GVINS 1.31 / 4.27 1.32 / 3.84 
 

  
Fig. 5. The GNSS-degenerated scenes in the KAIST dataset. These scenes are 
marked in Fig. 3 and Fig. 4. 

 
Fig. 7. The trajectories in the building dataset. The cyan rectangle corresponds 
to the GNSS-outage area in Fig. 6. 

 
Fig. 6. The test scenes in the building dataset. The cyan rectangle denotes the 
GNSS-outage area in Fig. 7. 
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building dataset is 1337 meters (950 seconds). As there are rich 
visual textures in this dataset, we used a max of 120 features. 

As shown in Fig. 6, many GNSS-degenerated scenes exist in 
the building dataset, and the GNSS is even interrupted in a 
narrow corridor. There are large drifts for VINS-Mono and 
OpenVINS, while there are only small drifts for IC-VINS, as 
depicted in Fig. 7. Besides, IC-GVINS is well aligned to the 
ground truth, even though there are GNSS outliers and outages. 
In contrast, VINS-Fusion has a notable drift because of the 
impact of the GNSS outliers, as depicted in Fig. 6.  

We also calculated the absolute pose error, as exhibited in 
Table II. The results demonstrate that IC-VINS yields higher 
accuracy than VINS-Mono and OpenVINS. In addition, 
VINS-Fusion shows worse accuracy than VINS-Mono, 
because the GNSS outlier may ruin the estimator significantly. 
In contrast, IC-GVINS exhibits improved accuracy compared 
to IC-VINS and performs the best in the building dataset. As 
can be seen, the proposed INS-centric can fully utilize the INS 
information and thus can mitigate the impact of the 
visual-challenging scenes in complex environments. Moreover, 
the employed outlier-culling algorithm for visual and GNSS 
observations can significantly improve the system robustness. 

D. Robustness Evaluation 
To fully demonstrate the robustness of the proposed method, 

we further evaluated the effects of the Earth rotation 
compensation, the strict outlier-culling algorithm, and the INS 
aiding in feature tracking. Three extra configurations were 
employed for the evaluation, as shown in Table III. 
1) Effect of the Earth Rotation Compensation 

The gyroscope bias-instability parameters for MTi-300 (10 °
/hr) in the KAIST dataset and ADIS16465 (2 °/hr) in the robot 
dataset are all smaller than the Earth rotation rate of 15 °/hr. 
Thus, it is necessary to compensate for the Earth rotation in the 
INS mechanization and IMU preintegration. We compared the 
results of IC-VINS and IC-VINS-E (without compensating for 
the Earth rotation), as depicted in Table III. The results indicate 
that the Earth rotation compensation can improve the system 
accuracy in the urban39 and building, while the translation 
accuracy degrades a little in the urban38. MTi-300 is not 
precise enough to sense the Earth rotation; thus, the effect of the 
Earth rotation compensation for Mti-300 in the KAIST dataset 
should not be significant. Besides, the impact of the Earth 
rotation compensation cannot be effectively determined if the 
visual observations are sufficient, as mentioned in [5]. 

As ADIS16465 is more precise, we further evaluated the 
effect of the Earth rotation compensation by detecting different 
visual features in the robot dataset. As can be seen in Table IV, 
the effect of the Earth rotation compensation is more significant 
when the visual features are fewer. The results demonstrate that 
the Earth rotation compensation can improve the system 
accuracy, especially when the visual system is weak, i.e. the 
visual-challenging scenes. Hence, we suggest compensating for 
the Earth rotation if a high-grade IMU is employed, which can 
improve the system accuracy in complex environments. 
2) Effect of the Strict Outlier-culling Algorithm 

Previous results have demonstrated that the employed GNSS 
outlier-culling algorithm can significantly improve the system 
robustness and accuracy. As for the visual outlier-culling 
algorithm, we compared the results of IC-VINS and 
IC-VINS-O, as exhibited in Table III. IC-VINS-O uses only the 
outlier-culling algorithm in VINS-Mono [6] without using the 
strict outlier-culling algorithm described in section III.C.2 and 
section III.D.5. The results indicate that IC-VINS outperforms 
IC-VINS-O in the urban38 and building, while the accuracy 
degrades a little in the urban39. The strict outlier-culling 
algorithm will result in fewer valid visual landmarks, but 
motions are needed to triangulate new landmarks. However, the 
vehicle has to stop at the traffic lights in the KAIST dataset 
frequently, and the passing vehicles may interrupt the feature 
tracking, resulting in fewer valid visual landmarks. The new 
landmarks cannot be created during stationary states with a 
monocular camera. Detecting more visual features in the 
KAIST dataset may solve this problem. Hence, we suggest 
employing the proposed outlier-culling algorithm to improve 
the robustness, especially in complex environments. 
3) Effect of the INS Aiding in Feature Tracking 

We also compared the results of IC-VINS and IC-VINS-I 
(without the INS aiding in the feature tracking) in Table III. The 
results illustrate that the INS aiding in feature tracking can 

TABLE III 
ABSOLUTE POSE ERROR IN DIFFERENT CONFIGURATIONS 

ARE / ATE (deg / m) urban38 urban39 building 

IC-VINS 1.44 / 10.83 1.77 / 13.07 0.41 / 1.83 

IC-VINS-E 1.45 / 9.91 2.08 / 15.64 0.62 / 2.09 

IC-VINS-O 1.62 / 12.88 1.65 / 12.12 0.70 / 2.34 

IC-VINS-I 1.54 / 11.37 2.23 / 15.83 0.50 / 1.90 
The IC-VINS-E denotes the method without the Earth rotation compensation in 
IMU preintegration. The IC-VINS-O denotes the method without the strict 
outlier-culling strategy. The IC-VINS-I denotes the method without the INS 
aiding in feature tracking. 

 
Fig. 8. Comparison of the number of the landmarks in the building dataset. The 
green rectangles in the figure denote the areas where it occurs speed bumps and 
potholes. 

TABLE IV 
ABSOLUTE POSE ERROR CONCERNING DIFFERENT VISUAL FEATURES IN THE 

ROBOT DATASET 
ARE / ATE (deg / m) 120 60 30 

IC-VINS 0.41 / 1.83 0.55 / 1.82 0.65 / 2.21 

IC-VINS-E 0.62 / 2.09 0.90 / 2.45 0.69 / 2.40 
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improve the system accuracy, especially in the high-dynamic 
dataset, i.e. the KAIST dataset. For the low-speed wheeled 
robot, the effect of the INS aiding is limited. In the building 
dataset, there are several speed bumps and potholes which may 
cause aggressive motion, making feature tracking extremely 
challenging. Hence, we compared the landmarks in the building 
dataset to evaluate the effect of the INS aiding in feature 
tracking. As depicted in Fig. 8, without the INS aiding, the 
valid landmarks are far fewer than 20 in such cases and are even 
close to 0. With the help of INS aiding, the valid landmarks are 
more than 20 during the whole travel. The results demonstrate 
that the INS aiding can improve the robustness of the feature 
tracking significantly, especially in high-dynamic scenes. 

E. Run time analysis 
The average running times of IC-GVINS are shown in Table 

V. All the experiments are running within the ROS framework, 
demonstrating that IC-GVINS can perform real-time 
positioning on both the desktop PC (AMD R7-3700X) and the 
onboard ARM computer (NVIDIA Xavier). 

V. CONCLUSIONS 
A robust, real-time, INS-centric GNSS-visual-inertial 

navigation system is presented in this letter. As the visual 
system may be affected by degenerated scenes, the precise INS 
information is fully employed in the visual processes and state 
estimation to improve the system robustness and accuracy in 
complex environments. With the GNSS-aided initialization, the 
IMU, visual, and GNSS measurements can be tightly fused in a 
unified world frame within the FGO framework. We performed 
experiments in both the high-speed vehicle and the low-speed 
robot datasets. IC-GVINS exhibits superior robustness and 
accuracy in degenerated and challenging scenes. The results 
demonstrate that the proposed method with the INS-centric 
architecture can significantly improve the system robustness 
and accuracy compared to the SOTA methods in complex 
environments. 
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TABLE V 
AVERAGE RUNNING TIME OF IC-GVINS 

PC / Onboard (ms) urban38 urban39 building 

Front-end 11.5 / 35.9 11.8 / 39.8 14.4 / 32.4 

FGO 18.4 / 73.2 18.3 / 76.5 17.4 / 101.5 

Here, the FGO is only conducted when a new keyframe is selected. 


