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FF-LINS: A Consistent Frame-to-Frame
Solid-State-LiDAR-Inertial State Estimator

Hailiang Tang ", Tisheng Zhang *“, Xiaoji Niu

Abstract—Most of the existing LiDAR-inertial navigation sys-
tems are based on frame-to-map registrations, leading to incon-
sistency in state estimation. The newest solid-state LIDAR with a
non-repetitive scanning pattern makes it possible to achieve a con-
sistent LiDAR-inertial estimator by employing a frame-to-frame
data association. In this letter, we propose a robust and consistent
frame-to-frame LiDAR-inertial navigation system (FF-LINS) for
solid-state LiDARs. With the INS-centric LiDAR frame process-
ing, the keyframe point-cloud map is built using the accumulated
point clouds to construct the frame-to-frame data association. The
LiDAR frame-to-frame and the inertial measurement unit (IMU)
preintegration measurements are tightly integrated using the factor
graph optimization, with online calibration of the LiDAR-IMU
extrinsic and time-delay parameters. The experiments on the pub-
lic and private datasets demonstrate that the proposed FF-LINS
achieves superior accuracy and robustness than the state-of-the-art
systems. Besides, the LIDAR-IMU extrinsic and time-delay param-
eters are estimated effectively, and the online calibration notably
improves the pose accuracy.

Index Terms—LiDAR-inertial navigation, state estimation,
factor graph optimization, multi-sensor fusion navigation.

I. INTRODUCTION

IGHT detection and ranging (LiDAR) navigation system

has been widely used in navigation and mapping in this
century. Conventionally, the iteration closest point (ICP)-based
methods [1], [2] and the normal distributions transform (NDT)-
based methods [3], [4] have been adopted for pose estimation,
but they are mainly for dense point-cloud registration. The
LiDAR sensors employed in autonomous vehicles and robots
are commonly low-cost, and we can only obtain sparse point
clouds from a LiDAR frame. Besides, initial pose estimation
is also required to achieve successful iterations [5]. Moreover,
these methods are computationally intensive and may cost many
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Fig. 1. TIllustration of the frame-to-frame and the frame-to-map association in
LiDAR navigation.

computational resources. Due to these shortcomings, ICP-based
and NDT-based methods are usually unsuitable for real-time
navigation applications.

The real-time LiDAR odometry and mapping (LOAM) [6]
is proposed without using the ICP or NDT. The edge and plane
feature points are first extracted from a LIDAR frame by judging
the smoothness of the local surface [6]. The LIDAR odometry
is achieved by employing a frame-to-frame correspondence.
The LiDAR frame is registered to the global feature map using
the non-linear optimization method. The feature-point detection
and the frame-to-frame methods in LOAM [6] are mainly de-
signed for rotated 2-dimensional (2D) and 3-dimensional (3D)
spinning LiDARs. LeGO-LOAM [7] further segments ground
plane points and adopts a two-step optimization, yielding higher
computational performance.

In state estimation, if the covariance of the estimated states
cannot reflect the real estimation errors, then the estimator is
inconsistent [8], [9]. Without a prebuilt map, the LIDAR navi-
gation system should be a dead-reckoning (DR) system, and thus
the yaw and position may drift over time with growing covari-
ance [10]. However, a self-built map, such as a local point-cloud
map [11], [12], [13], [14] or a global point-cloud map [15],
[16], has been used to build up the frame-to-map association,
as depicted in Fig. 1. As the self-built map is fixed, the frame-
to-map method constructs an absolute constraint between the
current frame and the self-built map. Hence, in the frame-to-map
state estimator, the covariance of the yaw and position will not
grow, resulting in inconsistency in state estimation. This problem
may be more significant in multi-sensor fusion navigation with
a tightly-coupled formulation, as it is impossible to incorporate
other absolute-positioning sensors, such as the global navigation
satellite system (GNSS) [17].

The LiDAR point clouds are usually sampled at differ-
ent times, which results in motion distortion. Hence, the
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Fig. 2. Attitude standard deviation (STD) estimation comparison between
FAST-LIO2 and FF-LINS on Robot-campus dataset. FAST-LIO2 indicates
inconsistent estimation, as the yaw STD does not grow. In contrast, FF-LINS
exhibits great consistency in state estimation, because the yaw STD grows over
time, while the roll and pitch STDs converge due to their observability.

micro-electro-mechanical system (MEMS) inertial measure-
ment unit (IMU) can be employed to correct the distortion and
construct a LiDAR-inertial navigation system. LOAM utilizes
the orientation and acceleration from an IMU to remove mo-
tion distortion, exhibiting improved accuracy [6]. In LIO-SAM,
the IMU is applied in a LiDAR-inertial state estimator [11]
within the framework of factor graph optimization (FGO) [18].
However, LIO-SAM [11] is a loosely-coupled system, as the
LiDAR odometry is adopted in the state estimator rather than
the raw LiDAR measurements. Besides, the LIDAR odometry
in LIO-SAM is implemented by building a local point-cloud
map, which is also inconsistent in state estimation, as depicted
in Fig. 1. Hence, LIO-SAM has to employ a pose graph opti-
mization [18] to fuse the LIDAR odometry and other absolute
positioning sources, including the GNSS and the loop-closure
constraint [11].

LINS [13] and FAST-LIO [14] are two similar tightly-coupled
LiDAR-inertial odometry using the iterated extended Kalman
filter (IEKF). The state estimation in [13], [14] is achieved by
registering the extracted feature points in a LiDAR frame to
the global feature-point map, which may result in inconsistency
in the LiDAR-inertial state estimator. Specifically, the unob-
servable terms for a DR system, including the global yaw and
the global position [8], can be wrongly observable by using the
frame-to-map method, as depicted in Fig. 2. Moreover, the mis-
alignment when registering the LiDAR frame to the global map
may leading to inconsistent pose estimation relative to the IMU
measurements. Thus, a wrong IMU biases estimation may occur
and ruin the accuracy of the inertial navigation system (INS)
[19]. In addition, the LiDAR-IMU extrinsic parameters cannot
be effectively estimated with such a frame-to-map method,
according to our experiments on FAST-LIO2.

Recently, the newly solid-state LiDAR with a non-repetitive
scanning pattern has been widely used for navigation and map-
ping [12], [15], [16], [20]. LOAM-Livox employs the LOAM
method for the solid-state LiDAR, Livox Mid-40, by adopt-
ing a new feature-extraction method [20]. For another solid-
state LiDAR, Livox Horizon, with a different scanning pat-
tern, LiLi-OM [12] proposes an applicable feature-extraction
method. Besides, this method is integrated into a LiDAR-inertial
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TABLE I
DIFFERENCES BETWEEN THE FRAME-TO-MAP AND THE FRAME-TO-FRAME
TIGHTLY-COUPLED LIDAR-INERTIAL SYSTEMS

Property The frame-to-map methods  The frame-to-frame methods
Constraint type Absolute Relative
Consistency Inconsistent Consistent
Observability Wrongly observabl_e_for Unobservable er‘ yaw angle
yaw angle and position and position
Extrinsic Cannot be estimated Can be estimated
parameters

scheme using a sliding-window optimization [12]. However,
the frame-to-map method is employed in [12], and thus the
inconsistent problem still exists. FAST-LIO2 [15] extends the
work in FAST-LIO [14] by incorporating a direct registration
method without feature extraction. Similarly, Faster-LIO [16]
uses incremental voxels as the point-cloud spatial data structure
rather than the incremental k-d tree in FAST-LIO2 [15]. Never-
theless, FAST-LIO2 and Faster-LIO adopt the same inconsistent
state estimator.

As mentioned above, the LiDAR-inertial navigation system
should be a DR system [10]. Hence, the LiDAR system should
build up the frame-to-frame association to construct a relative
constraint to achieve a consistent state estimation, as shown in
Fig. 1. LIPS designs a LiDAR-Inertial 3D Plane simultaneous-
localization-and-mapping (SLAM) system with a robust relative
plane anchor factor in graph-based optimization for indoor appli-
cations [21]. However, the planes should be segmented offline
using the Point Cloud Library (PCL) [22], which cannot run
in real-time. LIC-Fusion 2.0 [23] proposes a sliding-window
plane-feature tracking method, which is then integrated into a
multi-state constraint Kalman filter (MSCKF) [8]. As the relative
constraints with the frame-to-frame assocaition are constructed
in LIPS and LIC-Fusion 2.0, the inconsistent problem in the
state estimation should be solved. However, these methods are
mainly designed for the 3D spinning LiDARS, and they are
not applicable for solid-state LiDARs, such as Livox LiDARs
with a non-repetitive scanning pattern. Besides, complex plane-
extraction [21] or plane-association [23] algorithms should be
employed to construct the frame-to-frame associations, and thus
the computational complexity may significantly increase.

Table I exhibits the differences between the frame-to-map
and the frame-to-frame tightly-coupled LiDAR-inertial systems.
In this letter, we aim to construct a consistent solid-state-
LiDAR-inertial navigation system (FF-LINS). We follow the
INS-centric architecture in [17] to process the LiDAR data. A
direct frame-to-frame data association algorithm is presented
without explicitly extracting plane features. With the frame-to-
frame association, a LIDAR frame-to-frame factor is proposed to
construct a tightly-coupled LiDAR-inertial state estimator under
the framework of FGO. The main contributions of our work are
as follows:

® We propose a consistent solid-state-LiDAR-inertial state

estimator that tightly integrates the LiDAR and IMU mea-
surements within the FGO framework. The LiDAR-IMU

Authorized licensed use limited to: Wuhan University. Downloaded on January 03,2024 at 02:45:41 UTC from IEEE Xplore. Restrictions apply.



TANG et al.: FF-LINS: A CONSISTENT FRAME-TO-FRAME SOLID-STATE-LIDAR-INERTIAL STATE ESTIMATOR

IMU-Preintegration Factor

Prior Pose

Factor Graph
Updated States

Initialization Optimization
Navigation

Output
l Prior Pose l
ERILEE Frame . LG8 Point-cloud Map
LiDAR Building

Fig. 3.

LiDAR
Frame-to-Frame
Factor

System overview of the proposed FF-LINS.

extrinsic and time-delay parameters are all estimated and
calibrated online to further improve the accuracy.
®* A novel frame-to-frame data association algorithm is
presented. We build a direct keyframe point-cloud map
with accumulated LiDAR frames. The data association
is achieved by finding the nearest points in the keyframe
point-cloud maps within the sliding window.
e A frame-to-frame measurement model, which constructs
a relative measurement, is proposed to achieve consistent
state estimation. The frame-to-frame measurement residu-
als, and the Jacobians for the IMU poses and the LiDAR-
IMU extrinsic parameters, are all analytically expressed.
® The proposed FF-LINS is comprehensively evaluated on
both public and private datasets. The experiment results
demonstrate that FF-LINS with the proposed consistent
state estimator yields improved accuracy and robustness.
The remainder of this paper is organized as follows. We give
an overview of the system pipeline in Section II. The proposed
FF-LINS is presented in Section III. The experiments and results
are discussed in Section IV for quantitative evaluation. Finally,
we conclude the proposed FF-LINS.

II. SYSTEM OVERVIEW

The system overview of the proposed FF-LINS is depicted in
Fig. 3. The system pipeline is in an INS-centric architecture, and
the proposed FGO is a sliding-window optimizer [17]. Once the
INS isinitialized, the INS mechanization is conducted to provide
prior poses for LIDAR frame processing. With the prior INS
poses, the LiDAR frame is processed, and the LiDAR keyframe
is selected. Then, we build the keyframe point-cloud map with
accumulated LiDAR frames. Hence, the frame-to-frame data
association can be conducted by finding the nearest points in all
keyframe point-cloud maps within the sliding window. Finally,
the LiDAR frame-to-frame measurements can be constructed
between the LiDAR keyframes. The LiDAR and IMU measure-
ments are tightly coupled within the FGO framework to perform
the maximum-a-posterior estimation.

III. METHODOLOGY

The proposed consistent frame-to-frame solid-state-LiDAR-
inertial navigation system is presented in this section. We will
first introduce the INS-centric LiDAR frame processing. Then,
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the direct frame-to-frame data association algorithm is proposed.
Finally, we present the consistent state estimator with the ana-
lytical form of the frame-to-frame measurement residuals and
Jacobians.

A. INS-Centric LiDAR Frame Processing

We follow the INS-centric processing architecture [17] to
process the LiDAR frame. The high-frequency INS poses will
be employed to assist the LiDAR frame processing, including
the motion-distortion compensation, the keyframe selection, and
the keyframe point-cloud map building.

1) INS Mechanization: The INSisinitialized firstly with zero
position and zero yaw angle, while the roll and pitch angles
are determined from the accelerometer measurements [19]. We
can also obtain a rough gyroscope biases estimation if zero-
velocity conditions are detected [17]. The INS mechanization is
formulated by adopting the INS kinematic model as

Db = Vs Oy = R+ g%, @) = %q‘{f ® [ ,u())b } (D
where pJy and vy are the position and velocity of the IMU
frame (b-frame) in the world frame (w-frame), respectively; the
quaternion qy) and the rotation matrix R} denote the rotation of
the b-frame with respect to the w-frame; gV is the gravity vector
in the w-frame; w® and f b are the compensated angular velocity
and acceleration from the IMU, respectively; ® denotes the
quaternion product. The INS mechanization can be formulated
by adopting the kinematic model in (1) to obtain high-frequency
INS poses.

2) LiDAR Frame Preprocessing: A keyframe-based LiDAR
frame processing is employed in the proposed FF-LINS. When
a new LiDAR frame is valid, we preprocess the LiDAR frame
with the prior INS pose. Specifically, the interpolated INS poses
are adopted to retrieve undistorted point clouds. The direct-based
method is employed without explicitly extracting plane features.
The undistorted point clouds of a LiDAR frame are directly
downsampled using a voxel grid filter [22], and the leaf size is
set to 0.5 m [15].

In the proposed INS-centric architecture, the state-estimation
update will only be conducted when a new LiDAR keyframe
is selected, and the INS can output continuous poses during
the period [17], as depicted in Fig. 3. In other words, only the
LiDAR keyframe will be adopted to perform state estimation.
The proposed INS-centric processing can significantly save
computational costs and thus improve real-time performance
without decreasing accuracy.

To fully use the short-time accuracy of the INS, the LiDAR
keyframe should be selected within a short interval. Besides,
we should also consider LiDAR’s motions to build up valid
frame-to-frame LiDAR data association. If the translation or
the rotation change exceeds thresholds [11], e.g., 0.4 m and 10°,
a new LiDAR keyframe will be selected. Here, the translation
and the rotation are derived from the prior INS poses. If the
motion of the LiDAR is small for a long interval, e.g., 0.5 s, we
will also pick up a keyframe. When a new LiDAR keyframe is
selected, the frame-to-frame data association can be conducted
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Fig. 4. Illustration of the LiDAR keyframe and keyframe point-cloud map.

to perform the consistent state estimation. Nevertheless, the
LiDAR non-keyframes will be reserved to build the point-cloud
map corresponding to the new LiDAR keyframe.

3) Point-Cloud Map Building: The point clouds of a single
solid-state-LiDAR are sparse [20], which is inconducive for the
frame-to-frame data association. Relatively dense point clouds
can be obtained by accumulating several LiDAR frames due to
the non-repetitive scanning pattern of the solid-state LiDAR.
Hence, it is convenient to construct the frame-to-frame data
association with such dense point clouds. As we can obtain
high-accuracy poses from the INS in a short time, the LiDAR
frames can be further accumulated with the prior INS poses.
Specifically, all LIDAR frames since the previous keyframe,
including the non-keyframes and the new keyframe, will be
employed together to build the point-cloud map corresponding
to the new keyframe. As depicted in Fig. 4, the point clouds in
LiDAR non-keyframes will be projected to the corresponding
time of the LiDAR keyframe with the prior poses from the INS.
Finally, we obtain the LiDAR keyframe point-cloud map M,
which will be adopted for the frame-to-frame data association.
The keyframe point-cloud map is also downsampled using the
voxel grid filter in Section III-A-2.

B. Frame-to-Frame Data Association

As mentioned above, only the LiDAR keyframe will be
adopted for state estimation. Specifically, only the point clouds
in the LiDAR keyframe will be employed to construct the
frame-to-frame data association. In other words, the keyframe
point-cloud map M covers much more fields of view than the
LiDAR keyframe point cloud F. That is the reason that we can
build up valid frame-to-frame data associations.

As depicted in Fig. 5, if we have n + 1 LiDAR keyframes
in the sliding window, we will associate the latest keyframe F,,
with the keyframe point-cloud maps M;, i € [0,n — 1]. For a
point p' in F,,, where r denotes the LiDAR frame (r-frame),
it can be projected to the keyframe point-cloud maps with the
prior LIDAR pose {p};, ,q;’ } from the INS and the estimated
LiDAR pose {p};,,,q,’ }. As shown in Fig. 5, the projection of
the point p™ in M; can be written as

p = (RY) (RY p™ + DY, — DY), @)

In the proposed FF-LINS, the frame-to-frame association is
equal to the direct plane-point registration [15], and we treat all
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Fig. 5. Illustration of the frame-to-frame data association.

point clouds as plane-point candidates. With the projected point
p"* (thered points in Fig. 5), we find its five nearest points p, e €
[1, 5] (the green points in Fig. 5) in the keyframe point-cloud map
M. An overdetermined linear equation can be constructed using
the five nearest points to solve the following plane equation as

3)

where p is a point on the plane; n is the normalized normal
vector of the plane; d is a distance that satisfies the (3). The
fitted local plane is checked by calculating the point-to-plane
distance as

nTp+d=0,

disp, = [n"p, +d|,e € [1,5].

“)

If disp,, < 0.1 m for all the five points, the fitted plane will
be used for the following processing. Otherwise, the frame-to-
frame association for the point p* in M, is failed. A similar
method in [6], [15] is used to check the disp: = InTp' + d| to
validate the frame-to-frame association.

Finally, we obtain the frame-to-frame associations between
the latest LIDAR keyframe and other keyframes in the sliding
window. The fitted plane parameters {n, d} for each frame-to-
frame association will be employed to construct a LiDAR frame-
to-frame measurement in FGO. Hence, we can build relative
measurements between the latest LIDAR keyframe and other
keyframes to achieve a consistent state estimation.

C. Factor Graph Optimization

The INS information is fully utilized in the INS-centric
LiDAR frame processing, and thus we obtain the undistorted
LiDAR keyframe and the keyframe point-cloud map. The frame-
to-frame data association is achieved by constructing plane mea-
surements between the latest LiDAR keyframe and the keyframe
point-cloud maps. Hence, the consistent LiDAR-inertial state
estimator is achieved by tightly integrating the LiDAR frame-
to-frame and IMU preintegration measurements within the FGO
framework.

1) Formulation: The proposed consistent state estimator is a
sliding-window optimizer. The state vector X in FF-LINS can

be defined as follows
b b b
wk = [pv\;/,bkvqgkvvvv:]/bkabgkvbak] 7a:r = [pbrVqr} i
X = [x()vmlv s 7.’Bn,ﬂ§}?,td] )

®)

where @, k € [0,n] is the IMU state at each time node, includ-
ing the position, the attitude quaternion, and the velocity in the
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w-frame, and the gyroscope biases by and the accelerometer
biases b,; n is the size of the sliding window, i.e., the number of
the IMU preintegration factors; = is the LIDAR-IMU extrinsic
parameters; t; denotes the time delay between the LiDAR and
the IMU data.

The state estimation is conducted by solving the following
non-linear least squares problems of the form

> e (28, 2) [t

jelo,m]

min » 2
T'pre (zklika X) ‘

X
Z »Pre

ke[l,n] k-1,

Y

+ ||rp - Hp)(H2
k
(6)

where r g are the residuals for the LIDAR frame-to-frame mea-
surements, which construct relative pose constraints between the
latest LIDAR keyframe and other keyframes in the sliding win-
dow; m denotes the total number of the LiDAR measurements;
I p are the residuals for the IMU preintegration measurements
[24]; {r,, H,} denote the prior information from the marginal-
ization [25]. We adopt the Levenberg-Marquardt algorithm in
Ceres solver [26] to solve the non-linear least squares problem
in (6).

2) Frame-to-Frame Measurement Residuals: The LiDAR
frame-to-frame measurement residual is equal to the point-to-
plane distance [12]. Nevertheless, the proposed frame-to-frame
measurement model is consistent, while the frame-to-map mea-
surement model in the existing works is inconsistent, such as
[11], [12], [13], [15], [16], as shown in Table I. The LiDAR-
inertial extrinsic parameters {pp., q”} and the time delay t, are
all incorporated into the frame-to-frame measurement model
for online estimation and calibration. For convenience, the time
delay ¢, will be omitted in the following parts, and we can refer
to [23] for further details.

Suppose the raw point p™ in F',, is associated in the keyframe
point-cloud map M;. Then, we have the associated plane pa-
rameters {71, d}. The residual of the LiDAR frame-to-frame
measurement is the function of the IMU poses {py, ,qf }
and {py, ,qy }, and the LiDAR-IMU extrinsic parameters
{pt., qP}. The raw point p™ in F,, can be projected to the M;
step-by-step as follows

P = R]err" + p]t:;ra
p" =R} p™ + Y,
T
pbt = (R‘gl)T(pW 7p$b1) ?
p = (RY)" (p" —py),

where pP» and p"¢ denote the projections of the raw point p*»
in the b-frame of the LiDAR keyframe F; and F,,; p™ denotes
the projection in the w-frame; p" is the projection in the r-
frame of the keyframe F;. Hence, the LiDAR frame-to-frame
measurement residual can be written as

rg (2%, X) = (p)"p" +d, (8)

The LiDAR frame-to-frame measurement model in (7) and (8)
is similar to the visual reprojection model in visual navigation
[17], because they are all relative measurement models. In
other words, the proposed LiDAR frame-to-frame measurement
model is consistent in terms of state estimation.

(7
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As the direct method without explicitly extracting the plane
feature is adopted, the covariance 3 may be difficult to de-
termine. Thanks to the frame-to-frame association method, the
covariance X' can be obtained offline by quantitative error
statistics. Specifically, we can first generate the keyframe point
clouds F and keyframe point-cloud maps M with FF-LINS.
Then, the ground-truth poses can be employed to build the
frame-to-frame associations and calculate the frame-to-frame
measurement errors. Finally, we can analyze the distributions
of all the frame-to-frame measurement errors to obtain the
covariance. According to our experiments, the quantitative result
of the STD is about 0.088 m. In practice, the covariance is
set as % = 2T and o = 0.1 m, which will be evaluated in
Section IV-D.

3) Jacobians of the Frame-to-Frame Measurement Residual:
Using the error-perturbation method in [24], we can obtain
the analytical Jacobians of rp in (8) w.r.t the pose errors
{0pYy, 00w, } and {0py,, ,d¢Yy,. }, and the LIDAR-IMU ex-
trinsic errors {dpp, J¢"}. Here, ¢ denotes the rotation vector
of a quaternion g, and d¢ represents the attitude errors. Specif-
ically, the Jacobians w.r.t the pose errors {5py;, ,ddy,, } can
be formulated as

s = ()" (RY)" (Ry)" o
s = —(a)" (RY)" (Ry) Ry, [p™],

wbn,

where [.],, denotes the skew-symmetric matrix of a vector [19];

p°r is the point projection in (7). Similarly, the Jacobians w.r.t

the pose errors {dpy,, ,d =y, } can be written as

ot = () (RY)" (Ry)" o
sise— = (@) (RY)[(Ry)" (07— p)|

where p" is the point projection in (7). We can also obtain the
Jacobians w.r.t the LIDAR-IMU extrinsic errors {§pP,, § =P} as

)

or ~\T r; T
aspp — (1) (Rbn - (RY) )
r ~\T T . T; T
Zen = (@)" ([(RD)" (0™ —ph)| — Ry RVp™.)
(1)
where p®i is the point projection in (7), and p™ is the raw point
in the keyframe F,,. The rotation matrix Rfj’n can be written as

Rj, = (RY)' (RY)"RY,. (12)

Finally, we obtain the Jacobians of rr w.r.t pose errors and
the LiDAR-IMU extrinsic errors in (9), (10), and (11), which
are all analytically expressed.

4) Outlier Culling: We adopt a two-step optimization when
solving the non-linear least squares problems in (6). As wrong
frame-to-frame associations may occur, especially in complex
environments, we employ the Huber robust cost function [26] to
reduce the impacts of the outliers. After the first optimization, a
chi-square test is employed to determine and remove the LiDAR
frame-to-frame factor outliers from the optimizer. The estimated
states will be further optimized in the second optimization.
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Fig. 6. Testing scenes in the Robot dataset. Different colors denote different
sequences.

IV. EXPERIMENTS AND RESULTS

In this section, we conduct exhaustive experiments to evaluate
the proposed FF-LINS. The public and private datasets are all
employed to examine the accuracy and robustness of FF-LINS.
The running-time analysis is also conducted to evaluate the real-
time performance of FF-LINS.

A. Datasets and Implementation

The employed public datasets are the LiLi-OM [12] and
R3LIVE datasets [27]. The LiLi-OM dataset includes the Livox
Horizon with a frame rate 10Hz and the built-in IMU, and the
three longest sequences are adopted, including the sequences
Schloss-1, Schloss-2, and East. The R3LIVE dataset includes the
Livox AVIA with a frame rate 10Hz and the built-in IMU, and the
three longest sequences with end-to-end trajectories are adopted,
including the sequences hku_main_building, hkust_campus_00,
and hkust_campus_01.

The private datasets are collected with a low-speed wheeled
robot with an average speed of around 1.5 m/s. The sensors
include a solid-state LiDAR (Livox Mid-70 with a frame rate of
10 Hz) and an industrial-grade MEMS IMU (ADI ADIS16465
with a gyroscope bias instability of 2°/hr and a frame rate of
200 Hz). The solid-state LiDAR and the IMU are well-
synchronized through hardware triggers. The ground-truth sys-
tem is a high-accuracy GNSS/INS integrated navigation system
using the GNSS-RTK and a navigation-grade IMU [19]. Besides,
the ground truth (0.02 m for position and 0.01 deg for attitude) is
generated by a post-processing software. As depicted in Fig. 6,
there are four sequences in the Robot dataset, including campus
(1.33 km and 934 s), building (2.56 km and 1825 s), playground
(1.33 km and 969 s), and park (1.46 km and 1326 s). The
testing scenes contain various structured and unstructured envi-
ronments. Besides, many moving objects, such as pedestrians,
bicycles, and vehicles, make it very challenging to achieve robust
navigation.

The proposed FF-LINS is implemented using C++ and the
robot operating system (ROS). The sliding-window size n is set
to 10 to reduce the computational complexity. The LIDAR-IMU
extrinsic and time-delay parameters are all uncalibrated on these
datasets. The state-of-the-art (SOTA) LiLi-OM (without loop
closure) [12], LIO-SAM (without loop closure) [11], and FAST-
LIO2 [15] are employed for comparison. We adopt FF-LINS-
WO (without the online calibration) to evaluate the impact of the

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 12, DECEMBER 2023

TABLE II
DISTANCE ERRORS ON THE LILI-OM DATASET

Error (m)  LiLi-OM  LIO-SAM  FAST LIO2  FF-LINS
Schloss-1 1.36 0.47 1.10 0.23
Schloss-2 127 0.36 6.59 1.14
East 15.43 25.16 8.30 2.81
Average 6.02 8.66 533 1.39
TABLE III

END-TO-END ERRORS ON THE R3LIVE DATASET

Error (m) LIO-SAM FAST-LIO2 FF-LINS-WO FF-LINS
hku_main_building Failed 2.50 12.18 1.20
hkust_campus_00 3.29 3.69 14.16 241
hkust_campus_01 20.82 0.14 17.14 2.51

Average Invalid 2.11 14.49 2.04

online calibration of the LIDAR-IMU extrinsic and time-delay
parameters. All the systems are run in real-time on a desktop PC
(AMD R7-3700X) under the framework of ROS.

B. Evaluation of the Accuracy

1) Public LiLi-OM Dataset: There is no ground truth in the
LiLi-OM dataset, and we do not have the end-to-end reference.
Hence, the GPS positioning results (with meter-level accuracy)
at the starting and ending points are adopted to calculate the
starting-ending distance. We also calculate the starting-ending
distances of the employed LiDAR-inertial navigation systems.
Finally, the distance errors on the LiLi-OM dataset are shown in
Table II. According to the results in Table II, the proposed FF-
LINS yields comparable accuracy to the SOTA methods. FAST-
LIO2 exhibits degraded accuracy on Schloss-2, as its distance
error is far larger than other systems. The distance errors are all
meter-level on Schloss-1 and Schloss-2, except for FAST-LIO2,
and thus LiLi-OM, LIO-SAM, and FF-LINS achieve the same
accuracy. Moreover, FF-LINS yields the best accuracy on East,
which is the longest sequence.

2) Public R3LIVE Dataset: In the R3LIVE dataset, we have
the end-to-end reference for quantitative evaluation. We fail to
run LiLi-OM on the R3LIVE dataset, as LiLi-OM is designed for
Livox Horizon rather than Livox AVIA in the R3LIVE dataset.
We obtain the end-to-end results, as shown in Table III. LIO-
SAM fails on hku_main_building, because of the few feature
points in narrow indoor passages. Nevertheless, direct-based
methods FAST-LIO2 and FF-LINS succeed in such environ-
ments. FF-LINS achieves superior accuracy than FAS-LIO2 on
hku_main_building and hkust_campus_00. FAST-LIO2 yields
the best end-to-end result on hkust_campus_0I. The reason
is that the frame-to-map methods, including FAST-LIO2 and
LIO-SAM, may match with their built map when a loop oc-
curs, as depicted in Fig. 7. However, they may also drift, and
thus the frame-to-map matching will result in a large jump in
the trajectory, as shown in Fig. 8. Here, the velocity curve is
employed because the trajectory jump can be more notable to
be examined. Besides, hkust_campus_00 and hkust_campus_01
are collected in the same testing scenes. FAST-LIO2 exhibits
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Fig. 7. Trajectories on the R3ILIVE-hkust_campus_01 dataset.
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TABLE IV
ARE AND ATE ON THE ROBOT DATASET

ARE/ATE FAST- FF-LINS- FF-LINS FF-LINS FF-LINS FF-LINS
(deg/m)  LIO2 WO  (0.03m) (0.05m) (0.08m) (0.1 m)
campus  3.55/442 2.45/2.17 0.68/2.42 0.58/2.12 0.46/1.72 0.41/1.51
building  3.13/3.12 2.23/2.24 0.91/2.47 0.73/2.25 0.64/1.96 0.65/1.90

playground 2.84/1.59 2.55/1.79 1.45/1.83 1.09/1.46 0.84/1.30 0.77/1.27

park  3.24/4.00 2.40/2.08 0.19/0.94 0.60/1.13 0.84/1.34 0.90/1.44

Average  3.19/3.28 2.41/2.07 0.81/1.92 0.75/1.74 0.70/1.58 0.68/1.53

different results on the two sequences, while the proposed FF-
LINS yields a similar accuracy. Hence, the result for FF-LINS
on hkust_campus_01 is not so-called bad. In addition, FF-LINS
yields the best accuracy on the R3LIVE dataset in terms of the
average error.

3) Private Robot Dataset: We fail to run LiLi-OM and LIO-
SAM on the Robot dataset. As Livox Mid-70 only contains
only one scanning line, few feature points can be extracted,
which is terrible for feature-based systems like LiLi-OM and
LIO-SAM. The absolute rotation error (ARE) and absolute
translation error (ATE) are adopted for quantitative evaluation.
Table IV indicates that FF-LINS exhibits superior accuracy than
FAST-LIO2 on all four sequences. The results may be the sparse
single LiDAR frame of Livox Mid-70, resulting in fewer frame-
to-map associations than for FAST-LIO2. Hence, FAST-LIO2
degrades accuracy in the Robot dataset, especially when large
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Fig. 9. Estimated LiDAR-IMU extrinsic and time-delay parameters on the
R3LIVE-hkust_campus_00.

motions occur, which may result in few LiDAR frame-to-map
measurements. In contrast, with the INS-centric architecture, the
keyframe point-cloud maps are built with several LiDAR frames
to construct the frame-to-frame association in FF-LINS. In other
words, the proposed frame-to-frame association is more robust.
Besides, the INS information is fully utilized in FF-LINS, and
the LIDAR-IMU extrinsic and the time-delay parameters are all
estimated and calibrated online. Hence, FF-LINS can achieve
more consistent state estimation and thus can perform higher
navigation accuracy.

C. The Impact of the Online Calibration

FF-LINS-WO is adopted to evaluate the impact of the online
calibration of the LIDAR-IMU extrinsic and time-delay parame-
ters. Table III shows that FF-LINS-WO indicates significant ac-
curacy degradation without the online calibration on the R3LIVE
dataset. The reason is that the rotation parts of the LIDAR-IMU
extrinsic parameters are relatively large. Specifically, the angles
w.r.t the = and y axes (the horizontal attitude angles) are larger
than 1.0 degrees, as depicted in Fig. 9. The horizontal attitude
angles, i.e., the roll and pitch angles, are observable terms due to
the gravity [8]. Hence, their impacts are much more significant
in FF-LINS.

Moreover, all LIDAR-IMU extrinsic parameters converge,
and even the tiny time-delay parameter converges. The results
in Fig. 9 demonstrate that the proposed FF-LINS is consistent
in state estimation; thus, these parameters can be effectively
estimated. It should be noted the estimated parameters are almost
the same on different sequences within a dataset.

The results in Table IV also demonstrate that the online cali-
bration can notably improve the system accuracy on the Robot
dataset, especially the rotation accuracy. The reason is that the
angle w.r.t the z axis (the yaw angle) of the LIDAR-IMU extrinsic
parameters is larger than 2.0 degrees on the Robot dataset,
according to our analyses. The yaw angle is an unobservable
term [8], and thus its impact should be limited, as the translation
accuracy only degrades a little.

D. The Impact of the Measurement Covariance

We also conduct experiments on the Robor dataset to evaluate
the impact of the measurement covariance. As the quantitative
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TABLE V
AVERAGE RUNNING TIMES OF FF-LINS ON THE ROBOT DATASET

Time (ms) campus building  playground — park
Frame-to-frame association 2.7 2.6 2.7 2.7
Factor graph optimization 38.5 37.5 45.6 32.6
Equivalent FPS 42 44 40 62

result of the STD is about 0.088 m in Section III-C-2, we set
the STD of the frame-to-frame measurements as 0.03 m, 0.05
m, 0.08 m, and 0.1 m, and the results are shown in Table IV.
If the STD is smaller, the averages of the ARE and ATE are
larger. When the STD is set to 0.08 m and 0.1 m, the results
show almost no change. Hence, the STD of the frame-to-frame
measurements can be set to 0.1 m in the proposed FF-LINS.

E. Running Time Analysis

The average running times of FF-LINS on the Robot dataset
are shown in Table V. The LiDAR frame preprocessing costs
about 0.6 ms per frame. The FGO times vary on different
datasets, as the number of valid frame-to-frame associations
may be notably different. The results in Table V indicate that
FF-LINS can achieve an equivalent frames per second (FPS) of
40~62, exhibiting superior real-time performance.

V. CONCLUSION

This letter proposes a frame-to-frame solid-state-LiDAR-
inertial state estimator, which achieves robust and consistent
navigation in challenging environments. The proposed LiDAR
measurement model can provide a relative constraint by con-
structing the direct frame-to-frame data association. Hence,
the inconsistency problem in LiDAR-inertial navigation sys-
tems due to the frame-to-map association has been solved.
The LiDAR-IMU extrinsic and time-delay parameters can be
effectively estimated and calibrated online with the consistent
state estimator. Besides, we do not need to extract feature points
or segment and track plane points, significantly improving the
real-time performance.

The proposed LiDAR frame-to-frame measurement model
can be seamlessly incorporated into a multi-sensor fusion
navigation system with absolute-positioning sensors, such as
the GNSS and the high-precision map. Besides, the proposed
method provides an effective solution for offline LiDAR-IMU
calibrations. In addition, the frame-to-frame association can also
be utilized for large-scale and consistent mapping by incorpo-
rating loop closure.
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