
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

LLIO: Lightweight Learned Inertial Odometer
Yan Wang, Jian Kuang, Xiaoji Niu and Jingnan Liu

Abstract—The 3D position estimation of pedestrians is a vital
module to build the connections between persons and things. The
traditional gait model-based methods cannot fulfill the various
motion patterns. And the various data-driven-based inertial
odometry solutions focus on the 2D trajectory estimation on
the ground plane, which is not suitable for AR applications.
TLIO (Tight Learned Inertial Odometry) proposed an inertial-
based 3D motion estimator that achieves very low position drift
by using the raw IMU measurements and the displacement
prediction coming from a neural network to provide low drift
pedestrian dead reckoning. However, TLIO is unsuitable for
mobile devices because it is computationally expensive. In this
paper, a lightweight learned inertial odometry network (LLIO-
Net) is designed for mobile devices. By replacing the network
in TLIO with the LLIO-Net, the proposed system shows a
similar level of accuracy but remarkable efficiency improvement.
Specifically, the proposed LLIO algorithm was implemented on
mobile devices and compared the computational efficiency with
TLIO. The inference efficiency of the proposed system is up to
12 times improved than that of TLIO. Source code can be found
on github.

Index Terms—Pedestrian Dead Reckoning (PDR), Inertial
Navigation, Tightly-coupled Fusion, AI-Based Methods, Internet
of Things (IoT)

I. INTRODUCTION

Augmented reality (AR) exhibits tremendous potential for
improving the quality of life. To support AR, a pedestrian
positioning system can provide high accuracy 3D trajectories
in indoor and outdoor environments and play a crucial role in
connecting AR devices to the internet of things (IoT) network
[?].

Various techniques have been adopted to achieve indoor
navigation in recent years. Positioning systems based on
Bluetooth low-energy (BLE) [?] and WIFI [?] [?] [?] can only
achieve low accuracy positioning. Ultra-wideband (UWB)
systems [?] can provide decimeter-level positioning accuracy
in theory, but their performance significantly degrades in non-
line-of-sight (NLOS) environments. Furthermore, both tech-
niques mentioned above rely on pre-installed infrastructures.

Vision-based systems, such as the visual-inertial navigation
system (VINS), have seen tremendous success today. The
VINS [?] [?] can achieve high accuracy positioning over a

This work was supported in part by the National Key Research and
Development Program of China (Grant No.2016YFB0502202) and the Special
Fund of Hubei Luojia Laboratory (220100007) (Corresponding author: Jian
Kuang)

X. Niu is with the GNSS Research Center, Wuhan University, Wuhan,
Hubei, CO 430072 PR China. He is also with the Artificial Intelligence
Institute of Wuhan University. (e-mail:xjniu@whu.edu.cn)

Jingnan Liu, J. Kuang and Y. Wang are with the GNSS Research Cen-
ter, Wuhan University, Wuhan, Hubei, CO 430072 PR China (e-mails:
jnliu@whu.edu.cn;kuang@whu.edu.cn; wystephen@whu.edu.cn;)

Copyright (c) 20xx IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

long period through combined vision and inertial measures.
Meanwhile, the hardware cost of VINS has become acceptable
for consumer-level devices. These advantages have made the
VINS one of the best for determining indoor positions, espe-
cially for AR. However, despite the impressive performance
of state-of-the-art VINS solutions, applying these methods
in product scenarios remains challenging. For example, the
vision-based system relies heavily on consistent feature as-
sociation. However, feature association cannot be achieved
in certain challenging scenarios (such as positioning in a
dark room or when the camera is blocked by obstacles).
Thus, a system that can provide consistent pose estimation
independent of external environments is necessary.

An inertial measurement unit (IMU) collects, i.e., linear
acceleration (or specific force for strict speaking) and angular
rate data, which are used in an inertial navigation system (INS)
to estimate 3D motion relative to the first instance. The INS
is a fully self-contained positioning system. In other words, it
estimates trajectory without any dependency on the external
environment. This feature indicates that INS complements the
visual-based system well in AR. In fact, INS is utilized widely
in mobile devices that need indoor positioning. However, the
MEMS IMUs embedded in mobile devices, such as mobile
phones and AR headsets, cannot provide long-term motion
estimation alone. This is because the noise in low-end IMUs
is strong, and the position accumulation error of strapdown
INS is proportional to the square of time.

Pedestrian dead reckoning(PDR) uses sensors in mobile
devices to detect gait information and form a dead-reckoning
model. Some approaches [?] used prior knowledge of human
motion to eliminate the accumulation error of velocity. One
way of applying the prior knowledge is to detect gait cycles
and use this information to estimate trajectories. However, this
approach consists of several sub-modules: step detection, step
length estimation and step orientation estimation. Each module
requires several hand-designed rules or machine learning. For
hand-designed rules, it is difficult to determine rules that are
suitable for every scenario and all users. For machine learning,
it is not easy to collect massive datasets with the ground truth
for certain sub-modules, e.g., step detection.

Recent research has shown that data-driven inertial odome-
ters can directly provide trajectories by integrating the average
velocity through machine learning. Many approaches have
focused on achieving 2D positioning [?] [?] [?] [?]. IONet [?]
first proposed an LSTM-based architecture to estimate relative
displacement in the ground plane. RoNIN [?] assumed that the
global orientation is calculated by fusing linear acceleration,
angular rate, and magnetic. Then, the velocity was estimated
using a neural network (including ResNet, LSTM, and TCN)
based on acceleration and gyroscope data represented in the
gravity-aligned frame. IDOL [?] uses acceleration, angular

https://github.com/i2Nav-WHU/LightweightLearnedInertialOdometer


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

rate, and magnetic to estimate global orientation rather than
use global orientation estimated conventionally. It achieves
the best accuracy in terms of both orientation and position.
Compared to traditional PDR, these learning-based methods
exhibit higher accuracy and are more robust for various motion
patterns.

However, for AR headsets in complex environments, a 3D
pose estimator is necessary. Tight learned inertial odometry
(TLIO) [?] achieved learned inertial odometry for AR headsets
and can estimate 3D poses accuracy for complex scenarios. It
adopts ResNet to estimate the 3D displacement in short periods
and uses a Kalman Filter to fuse it with IMU measurements
to achieve long-term dead reckoning. It exhibits the best
performance in field testing but is computationally expensive.
Compared with the visual solution, the method proposed in
this paper only uses IMU observations, which is not affected
by the external environment and can provide more stable
positioning performance.

However, computational efficiency is a vital metric for AR
applications run on mobile devices because the computation
power of mobile devices is limited. In reality, the efficiency
bottleneck of TLIO is the ResNet-based neural network,
which is used to infer 3D displacement. More specifically,
the ResNet-based architecture adopted in TLIO is compu-
tation expensive and not friendly for mobile-device code
implementations. Previous researchers replaced LSTM-based
with WaveNet-based architecture in IONet and significantly
increased computing efficiency [?]. However, the size of the
tested datasets is relatively simple, and their performance
needs to be verified when faced with large data sets.

Recent multilayer perceptron (MLP) models [?] [?] [?] have
shown potential to replace ResNet because their architectures
can provide a better efficiency and accuracy trade off. For ex-
ample, recent MLP-based models can improve efficiency while
achieving similar accuracy in image classification. Moreover,
the MLP architecture mainly uses matrix multiplication, which
has been highly optimized in mobile devices. This fact indi-
cates that the MLP architecture could be easily implemented
on mobile devices.

In this paper, we propose a lightweight learned inertial
odometry for mobile devices whose primary goal is to improve
computing efficiency while ensuring that the accuracy is not
significantly reduced. This paper has two major contributions:

• We proposed a lightweight MLP-based network to per-
form regression on both the 3D displacement and the cor-
responding covariance. Specifically, we use this network
to replace the ResNet architecture in TLIO and evaluate
the system performance. The proposed networks provide
similar performance and are (1.9 - 12.0)x faster than
ResNet-based methods when implemented on mobile
devices.

• We conduct systematic research into the relationship
between the computational efficiency and the positioning
performance of the neural network models on mobile
devices.

The remainder of the paper is organized as follows. Section
II gives a brief description of the entire system. Section III
describes the whole solution in detail. Section IV uses real test

datasets to prove that the proposed network achieves similar
accuracy while significantly improving efficiency. Section V
summarizes the entire study.

We denoted the proposed system as the LLIO and the
lightweight MLP-based network as LLIO-Net for the remain-
der of this paper.

II. SYSTEM OVERVIEW

The proposed system uses raw IMU measurements (linear
acceleration and angular velocity) and performs 3D motion
estimation using the first instance. As shown in Figure.1,
this system consists of two components: a stochastic clone
extended Kalman filter (SCEKF) [?] and a lightweight inertial
odometry neural network (denoted as LLIO-Net).

The SCEKF estimates the 3D motion (including position,
orientation, and velocity) and the biases of IMU. Block IMU
mechanization is the propagation of the SCEKF. It predicts
the system state through INS mechanization based on IMU
raw measurements. The input of the measurement update of
SCEKF is the 3D displacement provided by the LLIO-Net. In
summary, the filter tightly couples the raw IMU measurement
and the displacement, which is provided by LLIO-Net to
estimate the 3D motion and the IMU biases.

The LLIO-Net takes a sequence of IMU measurements
represented in a gravity-aligned frame to estimate the dis-
placement between the first and last instances. In the IMU
coordinate conversion block, the IMU measurements are con-
verted from the IMU frame to the navigation frame using the
rotation matrix estimated by the SCEKF. The network block
estimates the displacement and the corresponding covariance
based on the converted IMU measurements. The LLIO-Net
is inferred every 0.1 seconds and uses the previous 1 second
of IMU measurements as inputs. Thus, each measurement of
IMU was used ten times for inferencing.

The IMU measurement is utilized twice in the entire system.
Firstly, the raw IMU measurements are input for the IMU
mechanization to estimate the prior distribution of the system
state. Secondly, in the measurement update, the displacement
is estimated by the IMU measurements used to mitigate the ac-
cumulation errors of SCEKF. The primary information source
of the measurement update is the human motion patterns
memorized in the LLIO-Net rather than the IMU measurement
itself.

III. ALGORITHM DESCRIPTION

A. Coordinate Definition

In this paper, three coordinate frames are defined: the
navigation frame denoted as FN , the t-th body frame denoted
as FBt , and the t-th local gravity-aligned coordinate denoted
as FLt . FBt aligned the coordinates of IMU at t moments.
FN is a gravity-aligned coordinate. It is aligned with the
IMU center at the initial moment. FLt is the gravity-aligned
coordinate frame at which the yaw is the same as FBt . In
this paper, the 3D motion in the SCEKF is parameterized as
position (tnbt ) of the t-th body frame, rotation (Rnbt ) from
the t-th body frame to the navigation frame, and the velocity
of the t-th body frame in the navigation frame. The IMU raw



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

Fig. 1. System flowchart. The block named model correction selects a
keyframe for inference displacement based on LLIO-Net. In this paper, the
key frame is selected every 0.1 s.

Fig. 2. Coordination Definition

measurements at the t-th moments are denoted as aBt
t and

ωBt
t . Moreover, aNt and ωNt denote them represented in the

navigation frame.

B. Lightweight Learned Inertial Odometry Network

In this section, we introduce the lightweight learned inertial
odometer network (LLIO-Net). Figure 3 shows the framework
of LLIO-Net.

1) Network architecture: The LLIO-Net uses a residual
multi-layer perceptron (ResMLP) architecture [?] as a feature
extractor to predict displacement and corresponding covari-
ance. Compared with the traditional MLP, the ResMLP uses
fewer parameters and can establish interactions between any
two positions in the feature matrix, which the traditional
MLP does. Compared with the ResNet, the ResMLP can
achieve long-range interaction easier and with lower inductive
bias. The proposed LLIO-Net consists of three modules. The
feature conversion module rearranges the raw input as a feature
matrix. The ResMLP module extracts high-level features from
the input feature embeddings. The regression module regresses
the displacement and corresponding covariance.

The feature conversion module rearranges the IMU mea-
surements in the navigation frame. Using the IMU measure-
ments between t−L and t moments, the input is a 6×L matrix.
The input is split into Npatch patches, where each patch
contains Lfeature measurements (L = Npatch × Lfeature).
Then, each patch is flatted, and all features are combined.
Subsequently, we obtain Npatch (6 × Lfeature)-dimensional
embeddings. The resulting set of Npatch embeddings is fed to
a sequence of ResMLP blocks

The ResMLP module consists of a sequence of ResMLP
blocks that all have the same structure. Before the ResMLP
modules, a linear layer converts the Npatch (6 × Lfeature)-
dimensional embeddings into Npatch Linnerfeature-dimensional
embeddings. Linnerfeature is the feature dimensions in the
ResMLP block. Each ResMLP block is a combination of an
affine layer (AFF), linear layer, and gaussian error linear unit
(GELU) layer (GELU).

The affine layer function performs a modified layer normal-
ization. It simply rescales and shifts the input component-wise
[?]. More specifically, the affine layer is defined as follows:

AFFα,β(x) = Diag(α)x+ β (1)

where α and β are learnable vectors. Note that AFF() for a
matrix is applied independently to each column of the matrix.

Overall, the ResMLP is a combination of the cross-patch
interaction block and the cross-channel interaction block. The
cross-patch interaction block is defined as

Z = M + AFF((A AFF(M)T )T ) (2)

The cross-channel interactions block is defined as

Y = Z + AFF(C GELU(B AFF(Z))) (3)

where A, B, and C are the main learnable parameters. The
dimensions of the parameter matrix A are Npatch × Npatch.
Consequently, the dimensions of Z are the same as those of
M , i.e., Npatch× (Linnerfeature). The dimensions of B and C are
Linnerfeature × (E × Linnerfeature) and (E × Linnerfeature) × Linnerfeature,
respectively. Thus, the dimensions of Y are the same as those
of Z and M . Here, E is the expansion dimension. Note that,
in contrast to the original ResMLP, we added a dropout layer
after GELU. This block is not shown in Figure 3.

The regression block uses the features extracted from
ResMLP module to estimate two 3D vectors: displacement d̂Nt
and the diagonal of the covariance matrix Σd̂Nt

. We assumed
that the uncertainty of d̂Nt at each axis is independent to
simplify the problem. Thus, the covariance matrix Σd̂Nt

is a
diagonal matrix. The network structure is shown in Figure 3
and consists of the average pooling layer, linear layer, and
GELU layer.

2) Training Methodology: The LLIO-Net is trained based
on two loss functions: the mean square error (MSE) loss
function for d̂Nt and the negative log-likelihood (NLL) loss
function for d̂Nt and Σd̂Nt

together. The MSE loss is defined
as

LMSE(d, d̂) =
1

n

∑
‖d− d̂‖

2
(4)



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Fig. 3. Framework illustration of LLIO-Net.

where d is the ground truth displacement and d̂ is the estimated
displacement of the network. By minimizing LMSE , the
network learned to estimate 3D displacement.

The NLL loss function is defined as

LNLL(d, d̂, Σ̂) =
1

n

∑ 1

2
log(det(Σ̂)) +

1

2
‖d− d̂‖2

Σ̂
(5)

where Σ̂ is the corresponding covariance matrix of d̂. Addi-
tionally, ‖d− d̂‖2

Σ̂
is defined as

‖d− d̂‖2
Σ̂

= (d− d̂)T Σ̂(d− d̂) (6)

. By minimizing LNLL, the network learned to estimate the
covariance corresponding to the 3D displacement.

During the training stage, we adopt the same training
strategy as proposed in TLIO [?]. LMSE is adopted first
for training until the network converges. Then, we switch to
using LNLL only to train Σ̂ and d̂ together until the network
converges again.

C. State Clone Extended Kalman Filter

1) System State Definition: The full systemstate at t mo-
ment is defined as

Xt = (st, η1, ..., ηm) (7)

where η are past system states, and st is the current system
state. More specifically,

ηi = [Rnbi , tnbi ], (8)

st = [tnbt , Rnbt , vnbt , ba, bg] (9)

We express Rnbt as the rotation from FBt to FN , and tnbt and
vnbt are the position and velocity of FBt in FN , respectively.

ba and bg are the IMU accelerometer and gyroscope biases.
Indeed, we use the IMU noise model defined as

abtt = âbtt + ba + na (10)

ωbtt = ω̂btt + bg + ng (11)

abtt and ωbtt are the measured values of acceleration and
angular rate, respectively. âbtt and ω̂btt are the true values
of acceleration and angular rate, respectively. na and ng are
random noise variables following a zero-centered Gaussian
distribution. Moreover, the evolution of ba and bg is modeled
as discrete random walk processing.

The error-state-based indirect Kalman filter is utilized in the
proposed system. The error state indicates the difference be-
tween the estimated and real values, estimated in the SCEKF.
It is defined as

δXt = (δst, δη1, ..., δηm) (12)

δst = [δtnbt , φnbt , δvnbt , δba, δbg] (13)

δηi = [δtnbi , φnbi ] (14)

Hence, the dimension of the system is 15 + 6m, where m
is the number of cloned system states and 15 is the dimension
of st.

Since the rotation cannot be added directly, the error of
rotation φnbt is defined as

R̂nbt = RnbtexpSO3(φnbt) (15)

R̂nbt and Rnbt represent the estimate and real values of ro-
tation, respectively. expSO3(·) denotes the SO(3) exponential
map.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

2) State Propagation: The filter propagates the system state
using the IMU raw measurements based on IMU mechaniza-
tion. Because the proposed system aims to perform pedestrian
motion estimation, the trajectory length is limited. Thus, we
ignored the earth’s curvature. Meanwhile, the gravity gN is
assumed to be equal at every place of the navigation frame.
The simplified strapdown IMU mechanization is defined as

R̂nbt = R̂nbt−1expSO3((ω̂Bt
t − bg)∆t) (16)

v̂nbt = v̂nbt−1 + gN∆t+ R̂nbt(ât − ba)∆t (17)

t̂nbt = t̂nbt−1 + 0.5(v̂nbt−1 + v̂nbt)∆t (18)

The cloned states need not update in the propagation stage.
The error-state covariance propagation can be written as

Pt = ΦtPt−1ΦTt +GtQG
T
t (19)

Φt =

[
Φst 0
0 I6m

]
, Gt =

[
Gst
0

]
(20)

where Φst and Gst are the linearized state propagation matrix of
the previous state ŝt−1 and all noise (including sensor noise
and biased random walk noise), respectively. I6m is a 6m-
dimension identity matrix.

3) State Augmentation: The measurement update of the
SCEKF using the relative position of the current system
state and a previous system state. Thus, the previous system
state should be maintained in the SCEKF through stochastic
cloning. The cloned system state is a direct copy of the current
system state (only tnbt and Rnbt ). The probability propagation
of the stochastic clone step in the proposed system is defined
as

Pnewt =

I15 0 0
0 I6m 0
A 0 0

Pt
I15 0 0

0 I6m 0
A 0 0

T (21)

A =

[
I3×3 03×3 03×9

03×3 I3×3 03×9

]
(22)

4) Measurement Update: LLIO-Net provides the pseudo
measurement using the acceleration and angular rate in a
gravity-aligned coordinate frame. Thus, the output of LLIO-
Net is represented in these gravity-aligned frames. As de-
scribed in Section II, each IMU measure uses 10 times in
LLIO-Net. Converting the measurements at different moments
to the same coordinate frame can avoid redundant coordinate
conversion. Thus, all IMU measurements are converted to the
navigation frame, and the output of LLIO-Net is represented
in the navigation frame. However, the displacement in the
navigation frame imposed a constraint on the absolute heading.
More specifically, the displacement in the navigation frame
indicates the absolute heading observable in the SCEKF.
Nevertheless, the absolute heading is unobservable in theory.
To mitigate this problem, the 3D displacement was converted
to the local gravity-aligned frame FLt , anchored to the t-th
body frame FBt .

The displacement and its covariance, which the LLIO-Net
outputs, are represented in FN and are denoted as d̂Nt and

Σd̂Nt
, respectively. Additionally, the information used in the

measurement update is defined as

d̂Lt
t = R̂Tyawt

d̂Nt (23)

Σ
d̂
Lt
t

= R̂Tyawt
Σd̂Nt

R̂yawt (24)

R̂yawt
is the heading rotation matrix of R̂nbt . More specif-

ically, R̂nbt can be decomposed to the three-rotation matrix
(R̂nbt = R̂yawtR̂pitchtR̂rollt ), where R̂yawt , R̂pitcht , and
R̂rollt denote yaw, pitch, and roll, respectively.

Hence, the measurement function can be written as:

h(Xt) = RTyawt
(tnbj − tnbi) = d̂Lt

t + n
d̂
Lt
t

(25)

where tnbj represent the position of the j-th moment. In this
paper, the j-th moment is 1 second before i-th moment. n

d̂
Lt
t

follows the normal distributed N (0,Σ
d̂
Lt
t

).
In practice, there are some abnormal pseudo observations

contained in the LLIO-Net outputs. To mitigate the effect of
abnormal observations, a χ2-test is employed. In detail, the
observation is checked by the following condition:

‖RTyawt
(tnbj − tnbi)− d̂

Lt
t ‖HPH+Σ

d̂
Lt
t

< α (26)

H is the Jacobian matrix of h(Xt). α is the threshold of χ2-
test. We choose α = 11.345 corresponding to 99% of the χ2

distribution with 3 degree of freedom. Furthermore, to avoid
continuous reject pseudo observable leads to SCEKF crashed,
we directly accept the LLIO-Net output if the previous three
are rejected.

IV. EXPERIMENTS

In this section, we compared our proposed LLIO-Net with
TLIO when used with a head-mounted AR device. We re-
fer to the ResNet architecture in TLIO as ResNet for the
remainder of this paper. Furthermore, we compared three
versions of LLIO-Net, denoted as ResMLP512, ResMLP256,
and ResMLP512. All metrics are compared on the test set,
which is never present in the training stage. Note that all
methods use the same setup, except for the hyperparameters
that define and train the networks.

The remainder of this section is organized as follows.
Section IV-A describes the test implementation details. Section
IV-B describes the metrics to evaluate the accuracy of the
estimated trajectories. Section IV-C compares the accuracies of
all methods. Section IV-D analyzes the inference efficiencies
of the proposed methods. Section IV-E study the impact of the
different components in the proposed LLIO-Net.

A. Setup

1) Data Preparation: The dataset is collected using an
Asus Tango phone, which is widely used in the domain of
data-driven inertial odometry. The Asus Tango phone can es-
timate 3D motion through a fisheye global shutter camera and
embedded IMU module based on the visual-inertial odometry
technique. In our experiments, we close the trigger of area
learning to obtain a smooth trajectory. The trajectory is output
by the visual-inertial odometry function as ground truth in both



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

the training and evaluation stages. The full dataset contains
over 40 hours of head-mounted pedestrian data, including
various activities (walking, standing still, sitting down and up,
and going down and up the stairs). The datasets are captured by
six people with multiple different physical devices. Thus, the
dataset contains various individual motion patterns and IMU
systematic errors. In the AR applications, this ground truth is
easy to collect by the AR device itself. We follow the data
split method of TLIO and split the dataset into 80% training,
10% validation, and 10% testing subsets randomly.

2) Data Augmentation Strategy: As described before, we
use L IMU samples as input for the network. We select L =
100 as we collect IMU at 100 Hz. Thus, we send 1 second of
IMU samples to the network at each instance. We first convert
all IMU measurements from the body frame to the navigation
frame based on the ground truth rotation matrix in the training
stage. Moreover, the following data augmentation strategies
are adopted to improve the generalization of the network:

• Use a random horizontal rotation on the IMU measure-
ments and displacement together. ([−180, 180]◦), because
we assumed that the AR headset could be oriented to an
arbitrary heading with respect to the walking direction.

• Add a random bias to the IMU measurements
([−0.2, 0.2] m/s2 and [−0.5, 0.5]◦/s) to make the net-
work robust to the IMU bias.

• Add a random perturbation of gravity direction ([0, 5]◦)
to make the network robust to the gravity orientation
perturbation.

3) SCEKF Setting: In this study, we use measurements up-
dated at 10 Hz, providing 1 second of IMU samples to estimate
displacement, as described before. Thus, the SCEKF contained
9 cloned states in the filter. Furthermore, SCEKF removes the
last cloned state immediately after the measurement update. In
the evaluation stage, the SCEKF needs to be initialized. We
initialize the SCEKF based on the rotation matrix at the first
moment only to simulate the scenario that the IMU system
should be working individually. This is because the rotation
could be provided by an AHRS system easily. The bias of
IMU is set to zero as the initial value and is estimated online.

4) Training Details: We implemented all models using a
PyTorch 1.8 framework [?]. The ResNet uses the hyperpa-
rameters provided in TLIO [?]. Those hyperparameters exhibit
the most outstanding performance in our dataset as well. The
proposed ResMLP series model uses 6 ResMLP blocks with
a 0.2 dropout probability. The patch length Lpatch is 25.
The total length L is 100 for 1 second IMU measurements
collected at 100 Hz. The inner feature dimensional Linnerfeature of
ResMLP is 512, 256, and 128 for ResMLP512, ResMLP256,
and ResMLP512, respectively. All models are trained via an
ADAM optimizer [?]. The ResNet uses a learning rate of 1e-4.
Moreover, the ResMLP series uses a learning rate of 5e-4. We
trained each of the model configurations using an NVIDIA
GTX 3090.

B. Evaluation Metric

To evaluate the positioning performance, we define the
following metrics similar to TLIO:

Fig. 4. Comparison of the inference error CDFs of different models in the
test set. The network infers the displacement in 1 second as described before.

• ATE (m):
√

1
n

∑
‖tnbt − t̂nbt‖2

tnbt and t̂nbt are the ground truth position and estimated
position at the t-th moment, respectively. The absolute
translation error (ATE) is computed as the root-mean
square error (RMSE) of the estimated trajectory and the
ground true trajectory.

• RTE-∆t (m):√
1
n

∑
‖RTyaw(tnbt − tnbt−∆t

)− R̂Tyaw(t̂nbt − t̂nbt−∆t
)‖2

Ryaw and R̂yaw are the ground truth and estimated
heading rotation matrix, respectively. The relative
translation error (RTE) is the error of the trajectory
represented in the local gravity-aligned frame at the
t−∆t-th moment. Hence, the RTE is not affected by the
global yaw drift. In our implementation, ∆t = 1 minute.

• RTE-∆L (m):√
1
n

∑
‖RTyaw(tnbt − tnbk)− R̂Tyaw(t̂nbt − t̂nbk)‖2

RTE-∆L is the relative translation error (RTE) for every
10 m trajectory (∆L = 10m).

• AYE (◦):
√

1
n

∑
‖γt − γ̂t‖2

γt and γ̂t are the heading orientation of the ground
truth and estimated trajectory, respectively. The absolute
yaw error (AYE) is the RMSE of the absolute heading
drift. In practical, we calculation the rotation difference
through a three-axis rotation matrix and decompose the
yaw component to calculate the AYE.

• RYE-∆t (◦):
√

1
n

∑
‖(γt+∆t − γt)− (γ̂t+∆t − γ̂t)‖2

The relative yaw error (RYE) is calculated in the same
manner as the AYE. ∆t = 1 minutes.

C. System Performance

We describe a systematic comparison of the ResNet and
ResMLP series in this section. Specifically, we compared the
inference accuracy of the network and the positioning accuracy
of the entire system using different networks.

Table I gives an overview of the performance comparison.
The distance error in Table I indicates the average error of



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

TABLE I
PERFORMANCE COMPARISON BETWEEN THE RESNET BASED SOLUTION AND THE PROPOSED LLIO-NET.

Model Distance Error (m) ATE (m) RTE-∆t (m) RTE-∆L (m) AYE (◦) RYE-∆t (◦)
ResNet 0.111 6.68 0.900 0.239 11.54 2.46

ResMLP512 0.108 7.40 0.884 0.237 12.99 2.39
ResMLP256 0.110 6.80 0.963 0.255 11.48 2.36
ResMLP128 0.119 7.51 1.10 0.286 13.1 2.44

(a) (b) (c)

Fig. 5. CDFs of relative error metrics of different methods in test set.

(a) (b) (c)

(d) (e) (f)

Fig. 6. Selection of trajectories with different contours. The ground truth trajectory generated from the Tango phone denoted as GT and marked in yellow.
The ResNet trajectory is denoted by the black line. The ResMLP512, ResMLP256, and ResMLP128 are represented by red, blue, and green, respectively.

the inference results defined as 1
n

√∑
‖tnbt − t̂nbt‖2, which

is slightly different from the RMSE. This metric is used
to directly evaluate the neural network performance. Addi-
tionally, Figure 4 depicts the cumulative distribution function
(CDF) of inference RMSE. The ResMLP series shows similar
inference performance for both average distance error and the
CDF of inference RMSE. Specifically, the ResMLP512 and
ResMLP256 achieve slightly better inference accuracy than
ResNet, and the ResMLP128 is slightly worse than ResNet.

Table I also provides the ATE, RTE-∆t, RTE-∆L, AYE,
and RYE-∆t of the trajectories using different networks. Note
that all the relative metrics use a sliding window to calculate
those metrics. The step length of the sliding windows is
1
10 of the sliding window length (etc. 6s for TRTE-∆t).
Even ResMLP512 achieved a slightly better RTE-∆t, RTE-
∆L, and RYE than ResNet, but the ResNet showed better
ATE and AYE. Since those trajectories are collected over 15
minutes, the AYE and ATE are easily affected by random



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Fig. 7. Selected trajectory with height illustrated. (a) illustrated trajectory
in the x-y plane. (b) illustrated trajectory in the x-z plane. The ground
truth trajectory generated from the Tango phone is denoted as GT and
depicted in yellow. The black line represents the ResNet trajectory. The
ResMLP512, ResMLP256, and ResMLP128 are represented in red, blue, and
green, respectively.

perturbation. Figure 5 shows the CDFs of RTE-∆t, RTE-∆L,
and RYE-∆t. All methods exhibit the same level of accuracy
except ResMLP128. The ResMLP128 shows slightly worse
performance than ResNet from the perspective of stochastic
metrics.

Meanwhile, we select a group of trajectories to compare the
positioning performance. Figure 6 shows a selection of trajec-
tories to illustrate their performances with different contours.
All methods work well when the pedestrian walks straight
and worsen when the pedestrian stands still or walks around a
small area for a long time. Figure 7 depicts a 3D trajectory. All
methods can correctly estimate the trajectory when a person
is going up and down stairs.

This section fully compares the performances of the pro-
posed networks and ResNet with respect to inference accu-
racy, stochastic absolute and relative metrics, and illustra-
tion of trajectories in 2D and 3D. In summary, ResMLP512
and ResMLP256 show similar performance to the ResNet.
ResMLP128 is slightly worse than ResNet in all metrics but
still shows the same level of performance in positioning.
As mentioned in TLIO [?], its performance has significant
advantages over other algorithms. This article has similar
accuracy to TLIO, so we can consider that it has an advantage
in positioning accuracy compared to other data-driven inertial
odometry algorithms.

Furthermore, because the ground truth is used in visual-
inertial odometry without loop-closure, the ground truth tra-
jectory exhibits some cumulative positioning error, as shown
in Figure 6. The following section compares the network per-
formance based on inference accuracy and relative positioning
accuracy to avoid the cumulative error.

D. Inference Efficiency on mobile devices

In the proposed system, the main computation cost is
generated from two modules, namely the SCEKF (including
propagation, state clone, and measurement update) and the

network. We implement a C++ version of the SCEKF to
test the computational efficiency. The C++ version of SCEKF
can process data 190X faster than in real-time (2.9 seconds
processing time for a 561 seconds dataset). Meanwhile, the
inferencing speed of networks is significantly lower than that
of SCEKF. Specifically, if ResNet is used for inference, it will
cost 33 seconds that inference on this data set. Thus, the effi-
ciency bottleneck of this 3D inertial odometry is the network.
With an aim to achieve implementation on mobile devices,
the efficiency of the network is systematically analyzed in this
section.

At the same time, we compared the proposed method with
the article whose aim is to achieve a lightweight version of
IONet. The paper replaced the LSTM architecture network
in IONet with a WaveNet-based network architecture, which
reached a significant performance improvement. However, the
inputs and outputs of IONet are different from the method
discussed in this article. Thus, we made some changes based
on the network structure used in the paper to achieve the
same function for a fair comparison. In detail, we add two
two-layer MLP to output displacement and corresponding
covariance based on the output of LSTM and WaveNet. The
name of compared methods we use is built from these aspects.
For example, LSTM-2 is a model that takes 2 layers of
bi-directional long short-term memory (Bi-LSTM) with 128
hidden states. And WaveNet-32 is a WaveNet-based model
that takes 8 layers and uses 32 channels as described in [?].

To illustrate the computational efficiency, we compared the
inference time in the following devices:

• Google Pixel 3 (announced 2018)
Equipped with an octa-core CPU (Snapdragon 845 4x2.5
GHz & 4x1.6 GHz).

• Huawei Mate 30 5G (announced 2019)
Equipped with an octa-core CPU (Kirin 990 2x2.86 GHz
& 2x2.36 GHz & 4x1.95 GHz).

• Huawei Mate 40 (announced 2020)
Equipped with an octa-core CPU(Kirin 9000 1.x3.13 GHz
& 3x2.54 GHz & 4x2.05 GHz).

The mobile devices use PyTorch for Android 1.8.0 as a
deep learning inference framework. Every model performs
1000 inferences to calculate the average inference time. We
tested two versions of the just-in-time (JIT) compilation model
on mobile devices. The JIT model conversion uses the JIT
compiler to convert the model based on JIT alone. The Mobile
model conversion uses the JIT compiler and PyTorch built-in
mobile optimizer. Moreover, the inference result of the JIT
model and the Mobile model are compared. The difference
between the results is smaller than 1e-14. Thus, the JIT
model and the Mobile model can provide the same positioning
performance.

Table II shows the computation efficiency comparison. The
floating-point operations (FLOPs) of each model are provided.
The inference time ratio compared to ResNet at each setup was
also provided. The FLOPs of ResMLP256 and ResMLP128
are significantly lower than those of the ResNet and show
efficiency improvement when either the JIT model or the
Mobile model is used. The ResMLP512 has more FLOPs
than ResNet but exhibits better inference efficiency in testing



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

TABLE II
COMPARISON OF COMPUTATION EFFICIENCY

Model ResNet ResMLP512 ResMLP256 ResMLP128 LSTM-2 LSTM-1 WaveNet-64 WaveNet-32
Error
(m) 0.111 0.108 0.110 0.119 0.113 0.128 0.116 0.127

FLOPs
(M) 21.15 25.78 6.54 2.08 53.9 27.7 28.47 7.13

Time
(ms)

Pixel 3
JIT 9.9

(1x)
14.5

(0.68x)
4.8

(2.1x)
1.7

(5.7x)
43.3

(0.23x)
19.9

(0.50x)
5.6

(1.8x)
2.7

(3.7x)

Mobile 7.6
(1x)

3.9
(1.9x)

1.6
(4.7x)

0.8
(9.2x)

149.4
(0.05x)

62.6
(0.12x)

5.3
(1.4x)

2.5
(3.0x)

Mate 30
JIT 7.4

(1x)
8.1

(0.92x)
2.4

(3.1x)
1.0

(7.5x)
29.9

(0.25x)
13.8

(0.54x)
4.1

(1.8x)
2.3

(3.2x)

Mobile 6.1
(1x)

2.1
(2.9x)

0.9
(7.2x)

0.5
(12x)

79.5
(0.08x)

38.6
(0.16x)

3.9
(1.6x)

2.1
(2.9x)

Mate 40
JIT 6.2

(1x)
6.0

(1.03x)
1.9

(3.3x)
0.7

(8.3x)
23.3

(0.27x)
10.8

(0.57x)
3.1

(2.0x)
1.7

(3.6x)

Mobile 5.1
(1x)

1.8
(2.8x)

0.7
(7.1x)

0.4
(12x)

63.7
(0.08x)

32.5
(0.16x)

2.9
(1.8x)

1.5
(3.4x)

the Mobile model. This may benefit from the optimization
strategy in the mobile optimizer of PyTorch. In detail, the
ResMLP series shows better efficiency improvement on the
Mobile model. The inference time of ResMLP256 is 4.7-
7.2 times faster than the ResNet. Moreover, the ResMLP128
shows a 9.2-12 times faster inference time but with slightly
worse accuracy.

Compared with other algorithms, LSTM has obvious dis-
advantages in inference efficiency. WaveNet-64 can achieve
inference accuracy similar to that of ResNet, ResMLP512 and
ResMLP256. However, its reasoning efficiency has a signif-
icant disadvantage compared with the ResMLP series algo-
rithms proposed in this paper. On the other hand, WaveNet-32
shows similar inference accuracy to LSTM-1, consistent with
the experimental results in [?]. But this inference accuracy is
worse than ResNet. Figure. 8 shows the inference performance
and accuracy of ResNet, WaveNet and ResMLP. Since the
inference efficiency of LSTM is significantly worth than other
algorithms, it is not shown in this figure.

It is worth noting that we monitored the CPU usage during
the test. In the inference process of all models, the CPU runs
at full capacity. Therefore, the length of inference time can
reflect the computational load required by the model.

To illustrate the relation between accuracy and efficiency of
the whole method, Figure 9 shows the relationship between the
inference time and RTE-∆t of ResMLP and ResNet models
on a Huawei Mate 30.

In summary, the ResMLP series shows a higher accuracy–
efficiency ratio than the ResNet, LSTM and WaveNet. Al-
though all the models can run in real-time on current mobile
devices, the computational cost is still a key metric for
evaluating the suitability of executing the algorithm on mobile
devices. The positioning algorithm usually functions as a
fundamental component of other applications and runs during
the entire workflow. Thus, the improvement in the efficiency
of ResMLP is vital in this scenario.

E. Ablation Study
This section provides and analyzes the effect of several

parameters of the proposed LLIO-Net. As illustrated in Ta-
ble III, all ablation experiments are conducted based on

Fig. 8. Inference time and inference error of mobile models on Mate 30.

Fig. 9. Inference time and RTE-∆t of mobile models on Mate 30.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

TABLE III
THE RESULT OF ABLATION STUDY

Model Feature Dimension Expansion Dimension Layer Number Patch Size Distance Error (m) FLOPs(M)
ResMLP512 512 2 6 25 0.108 25.78
ResMLP256 256 2 6 25 0.110 6.54
ResMLP128 128 2 6 25 0.119 2.08

A 512 1 6 25 0.109 13.20
B 512 4 6 25 0.110 50.95
C 512 2 8 25 0.106 34.19
D 512 2 4 25 0.112 17.38
E 512 2 6 10 0.110 63.79
F 512 2 6 50 0.109 13.16

the ResMLP512, presented in Section IV-A. Each parameter
different from the ResMLP512 are marked using bold. The
meaning of conducted parameters can be found in Section
III-B. Furthermore, in Table III, we provide the distance error
and FLOPs in each experiment to compare both accuracy and
efficiency simultaneously.

The feature dimension (ResMLP512, ResMLP256 &
ResMLP128) and the layer number (ResMLP512, C & D)
show significantly contribution to model performance and
FLOPs. The expansion dimension (ResMLP512, A & B) and
the patch size (ResMLP512, E & F) can influence the FLOPs
but do not significant affect the prediction accuracy compared
to the feature dimension and the layer number. However,
an appropriate value is necessary to achieve high efficiency.
Moreover, the feature dimension and the layer number should
be priorities considered in order to obtain trade-off between
accuracy and efficiency.

V. CONCLUSION

In this paper, we proposed LLIO, a lightweight learned
inertial odometry, which introduces the LLIO-Net to replace
the ResNet-based architecture. The LLIO-Net module esti-
mates the 3D displacement and the corresponding covariance,
which is essentially based on human motion patterns, to
mitigate the accumulation error of the INS mechanization.
The experiments proved that the proposed LLIO-Net could
achieve the same level of accuracy as TLIO while significantly
improving computational efficiency (2x to 12x faster). The
inference efficiency test on mobile devices reveals that the
proposed inertial odometry can be implemented on mobile
devices and functions as a low-drift 3D pedestrian motion
estimator. Because of its low computational load and low
drift, the LLIO can be adopted as a backup for visual-inertial
odometry in AR applications. Alternatively, it can function as
an independent dead reckon module for fusing other sources
of information.

Further work would focus on the generalization of the
proposed model. For example, the performance for estimating
the 3D trajectories of pedestrians without or with a small scale
of labeled IMU sequences could be improved.

ACKNOWLEDGMENT

Tianyi Liu is thanked for sharing his opinion in the dis-
cussion of the method implementation. Thanks to RoNIN
to provide the data collection software for Tango devices.

The numerical calculations in this paper have been done on
the supercomputing system in the Supercomputing Center of
Wuhan University.

Yan Wang received the B.Eng. degree in Chemical Engineering and Tech-
nology from China University of Mining and Technology, Xuzhou, China,
in 2016. And he received an M.S. degree in Computer Applied Technology
from China University of Mining and Technology, Xuzhou, China, in 2019.
He is currently pursuing a Ph.D. degree in GNSS Research Center, Wuhan
University, Wuhan, China. His research interests focus on indoor navigation,
sensor fusion algorithm, and computer vision.

Jian Kuang received the B.Eng. degree and Ph.D. degree in Geodesy and
Survey Engineering from Wuhan University, Wuhan, China, in 2013 and 2019,
respectively. He is currently a Postdoctoral Fellow with the GNSS Research
Center in Wuhan University, Wuhan, China. His research interests focus on
inertial navigation, pedestrian navigation, and indoor positioning.

Xiaoji Niu received the B.Eng. degree (with honors) in Mechanical and
Electrical Engineering and the Ph.D. from Tsinghua University, Beijing,
China. He was a Postdoctoral Fellow with the Mobile MultiSensor Systems
(MFMSS) Research Group, Department of Geomatics Engineering, and the
University of Calgary. He was a Senior Scientist with SiRF Technology, Inc.
At present, he is a Professor of the GNSS Research Center and the Col-
laborative Innovation Center of Geospatial Technology at Wuhan University,
Wuhan, China. His research interests focus on INS, GNSS/INS integration
for land vehicle navigation, and pedestrian navigation.

Jingnan Liu is a member of the Chinese Academy of Engineering. He
was born in 1943 and graduated from the Wuhan Institute of Surveying
and Mapping with a bachelor’s degree in astronomical geodesy. He obtained
his master’s degree in engineering in 1982. Professor Liu has long been
engaged in research and teaching in geodetic surveying. He is considered
a pioneer in the application of GNSS technology. Professor Liu has taken
part in a number of research programs to promote the application of satellite
positioning systems in China.

https://github.com/Sachini/ronin

	Introduction
	System Overview
	Algorithm Description
	Coordinate Definition
	Lightweight Learned Inertial Odometry Network
	Network architecture
	Training Methodology

	State Clone Extended Kalman Filter
	System State Definition
	State Propagation
	State Augmentation
	Measurement Update


	Experiments
	Setup
	Data Preparation
	Data Augmentation Strategy
	SCEKF Setting
	Training Details

	Evaluation Metric
	System Performance
	Inference Efficiency on mobile devices
	Ablation Study

	Conclusion
	Biographies
	Yan Wang
	Jian Kuang
	Xiaoji Niu
	Jingnan Liu


